Собственные деформации бетона — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Собственные деформации бетона

2019-08-03 300
Собственные деформации бетона 0.00 из 5.00 0 оценок
Заказать работу

Общие сведения

Для обеспечения долговечной и нормальной эксплуатации бетон для железобетонных конструкций должен иметь необходимые для этого физико-механические свойства:

· прочность;

· хорошее сцепление с арматурой;

· непроницаемость для защиты арматуры от коррозии;

· специальные требования: морозостойкость, жаростойкость, коррозионная стойкость и др.

Классификация бетонов

1. По структуре:

1. плотные;

2. крупнопористые;

3. поризованные;

4. ячеистые.

2. По плотности:

1. особо тяжелые (ρ > 2500 кг/м3);

2. тяжелые (ρ = 2200 ÷ 2500 кг/м3);

3. облегченные (чаще мелкозернистые) (ρ = 1800 ÷ 2200 кг/м3);

4. легкие (ρ = 800 ÷ 1800 кг/м3).

3. По виду заполнителей:

1. на плотных заполнителях (щебень, песок, гравий);

2. на пористых заполнителях (естественных – пемза, перлит, ракушечник; искусственных – керамзит, шлак);

3. на специальных заполнителях.

4. По зерновому составу:

1. крупнозернистые;

2. мелкозернистые.

5. По условиям твердения:

1. бетоны естественного твердения;

2. бетоны, подвергнутые тепловлажностной обработке при атмосферном давлении;

3. бетоны, подвергнутые автоклавной обработке при высоком давлении и температуре.

Структура бетона

Структура бетона оказывает большое влияние на прочность и деформативность бетона. Существенным фактором является количество воды, применяемой для приготовления бетонной смеси, оцениваемое водоцементным отношением В/Ц. Для химического соединения воды с цементом необходимо, чтобы В/Ц ≈ 0,2; однако для достижения достаточной подвижности и удобоукладываемости бетонной смеси В/Ц=0,5…0,6 (подвижные бетонные смеси); В/Ц=0,3…0,4 (жесткие бетонные смеси). Избыточная химически несвязанная вода образует поры и капилляры в цементом камне, а затем, испаряясь, освобождает их. Таким образом, с уменьшением В/Ц уменьшается пористость цементного камня и прочность бетона увеличивается.

Структура бетона представляет собой пространственную решетку из цементного камня, заполненную зернами песка и щебня различной крупности и формы, пронизанную большим числом микропор и капилляров, которые содержат химически несвязанную воду, водяные пары и воздух.

Собственные деформации бетона

Бетон обладает свойством уменьшаться в объеме при твердении в обычной воздушной среде – усадка бетона. Она связана с физико-механическими процессами твердения и уменьшением объема цементного геля, потерей избыточной воды в результате испарения и гидратации с непрореагировавшими частицами цемента.

Усадке бетона препятствуют заполнители, которые становятся внутренними связями, вызывающими в цементном камне начальные растягивающие напряжения.

Неравномерное высыхание бетона, снаружи больше, а внутри меньше, приводит к неравномерной усадке, что ведет к возникновению начальных усадочных напряжений. Открытые, быстро высыхающие слои бетона испытывают растяжение; внутренние более влажные оказываются сжатыми. В бетоне появляются усадочные трещины.

Уменьшить начальные усадочные напряжения можно:

· конструктивными мерами (армирование, устройство усадочных швов);

· технологическими мерами (подбор состава, увлажнение среды, увлажнение поверхности бетона).

 

 

Прочность бетона

Прочность бетона зависит от многих факторов, как-то:

· структура бетона;

· марка цемента;

· водоцементное отношение В/Ц;

· вид мелкого и крупного заполнителя;

· условия твердения;

· вид напряженного состояния;

· форма и размеры сечения;

· длительность действия нагрузки.

Кубиковая прочность

Для определения прочности бетона на осевое сжатие обычно испытывают в прессе бетонные кубы с размером ребра 150 мм, характер разрушения которых обусловлен наличием или отсутствием сил трения, возникающих на контактных поверхностях между подушками пресса и гранями куба.

1. Несмазанный куб (рис. 2, а).

Силы трения между подушками пресса и гранями куба препятствуют свободным поперечным деформациям куба и соответственно упрочняют бетон сверху и снизу. По мере удаления от торцевых граней куба влияние сил трения уменьшается, поэтому после разрушения куб приобретает форму 2-х пирамид сверху и снизу.

2. Смазанный куб (рис. 2, б).

Если устранить силы трения смазкой контактных поверхностей, прочность бетонного куба будет меньше, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными. Временное сопротивление сжатию бетона для куба с ребром 150 мм равно R, с ребром 200 мм - 0,93 R, с ребром 100 мм – 1,1 R. Это объясняется изменением эффекта обоймы с изменением размеров куба.

а) б)

Рис. 2. Характер разрушения бетонных кубов:

а – несмазанный куб; б – смазанный куб;

Δ – поперечные деформации бетона.

Призменная прочность

Так как железобетонные конструкции по форме отличаются от кубов, основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb – временное сопротивление осевому сжатию бетонных призм. Призменная прочность меньше кубиковой, и она уменьшается с увеличением отношения h/a. Влияние сил трения на среднюю часть призмы уменьшается с увеличением ее высоты и при h/a= 4 значение Rb становится стабильным и равно приблизительно 0,75 R.

Рис. 3. Характер разрушения бетонной призмы.

Деформативность бетона

Виды деформаций бетона:

1. Объемные – во всех направлениях под влиянием усадки, изменения температуры и влажности.

2. Силовые – от действия внешних сил.

Бетону свойственно нелинейное деформирование, поэтому силовые деформации в зависимости от характера приложения нагрузки и длительности ее действия делят на 3 вида: деформации при однократном загружении кратковременной нагрузкой, деформации при длительном действии нагрузки и деформации при многократно повторяющемся действии нагрузки.

Рис. 7. Диаграмма зависимости между напряжениями и деформациями в бетоне

При сжатии и растяжении:

I – область упругих деформаций; II – область пластических деформаций;

1 – загрузка; 2 – разгрузка; εbu – предельная сжимаемость;εbtu – предельная растяжимость;

εер – доля неупругих деформаций, восстанавливающихся после разгрузки.

С увеличением скорости загружения V при одном и том же напряжении σb неупругие деформации уменьшаются (рис. 9).

Рис. 8. Диаграмма σb – εb в сжатом бетоне при Рис. 9. Диаграмма σb – εb в сжатом бетоне при

Рис. 11. Диаграмма зависимости между напряжениями и деформациями в бетоне

При многократном повторном загружении бетонного образца:

1 – первичная кривая; 2 – конечная кривая.

Модуль деформации

Начальный модуль упругости бетона (рис. 12) при сжатии Еb соответствует лишь упругим деформациям, возникающим при мгновенном загружении:

.

Модуль полных деформаций бетона (рис.12) при сжатии соответствует полным деформациям; является величиной переменной:

,

где α – угол наклона касательной к кривой σb – εb в точке с заданным напряжением.

Рис. 12. Схема для определениямодуля

Деформации бетона.

Для расчета железобетонных конструкций пользуются средним модулем или модулем упругопластичности бетона, представляющим собой тангенс угла наклона секущей в точке на кривой σb – εb с заданным напряжением (рис. 12):

.

Зависимость между начальным модулем упругости бетона и модулем упругопластичности:

,

где - коэффициент упругопластичных деформаций бетона; ν изменяется от 1 до 0,15.

С увеличением уровня напряжений в бетоне и длительности действия нагрузки коэффициент ν уменьшается.

 

Общие сведения

Для обеспечения долговечной и нормальной эксплуатации бетон для железобетонных конструкций должен иметь необходимые для этого физико-механические свойства:

· прочность;

· хорошее сцепление с арматурой;

· непроницаемость для защиты арматуры от коррозии;

· специальные требования: морозостойкость, жаростойкость, коррозионная стойкость и др.

Классификация бетонов

1. По структуре:

1. плотные;

2. крупнопористые;

3. поризованные;

4. ячеистые.

2. По плотности:

1. особо тяжелые (ρ > 2500 кг/м3);

2. тяжелые (ρ = 2200 ÷ 2500 кг/м3);

3. облегченные (чаще мелкозернистые) (ρ = 1800 ÷ 2200 кг/м3);

4. легкие (ρ = 800 ÷ 1800 кг/м3).

3. По виду заполнителей:

1. на плотных заполнителях (щебень, песок, гравий);

2. на пористых заполнителях (естественных – пемза, перлит, ракушечник; искусственных – керамзит, шлак);

3. на специальных заполнителях.

4. По зерновому составу:

1. крупнозернистые;

2. мелкозернистые.

5. По условиям твердения:

1. бетоны естественного твердения;

2. бетоны, подвергнутые тепловлажностной обработке при атмосферном давлении;

3. бетоны, подвергнутые автоклавной обработке при высоком давлении и температуре.

Структура бетона

Структура бетона оказывает большое влияние на прочность и деформативность бетона. Существенным фактором является количество воды, применяемой для приготовления бетонной смеси, оцениваемое водоцементным отношением В/Ц. Для химического соединения воды с цементом необходимо, чтобы В/Ц ≈ 0,2; однако для достижения достаточной подвижности и удобоукладываемости бетонной смеси В/Ц=0,5…0,6 (подвижные бетонные смеси); В/Ц=0,3…0,4 (жесткие бетонные смеси). Избыточная химически несвязанная вода образует поры и капилляры в цементом камне, а затем, испаряясь, освобождает их. Таким образом, с уменьшением В/Ц уменьшается пористость цементного камня и прочность бетона увеличивается.

Структура бетона представляет собой пространственную решетку из цементного камня, заполненную зернами песка и щебня различной крупности и формы, пронизанную большим числом микропор и капилляров, которые содержат химически несвязанную воду, водяные пары и воздух.

Собственные деформации бетона

Бетон обладает свойством уменьшаться в объеме при твердении в обычной воздушной среде – усадка бетона. Она связана с физико-механическими процессами твердения и уменьшением объема цементного геля, потерей избыточной воды в результате испарения и гидратации с непрореагировавшими частицами цемента.

Усадке бетона препятствуют заполнители, которые становятся внутренними связями, вызывающими в цементном камне начальные растягивающие напряжения.

Неравномерное высыхание бетона, снаружи больше, а внутри меньше, приводит к неравномерной усадке, что ведет к возникновению начальных усадочных напряжений. Открытые, быстро высыхающие слои бетона испытывают растяжение; внутренние более влажные оказываются сжатыми. В бетоне появляются усадочные трещины.

Уменьшить начальные усадочные напряжения можно:

· конструктивными мерами (армирование, устройство усадочных швов);

· технологическими мерами (подбор состава, увлажнение среды, увлажнение поверхности бетона).

 

 

Прочность бетона

Прочность бетона зависит от многих факторов, как-то:

· структура бетона;

· марка цемента;

· водоцементное отношение В/Ц;

· вид мелкого и крупного заполнителя;

· условия твердения;

· вид напряженного состояния;

· форма и размеры сечения;

· длительность действия нагрузки.

Кубиковая прочность

Для определения прочности бетона на осевое сжатие обычно испытывают в прессе бетонные кубы с размером ребра 150 мм, характер разрушения которых обусловлен наличием или отсутствием сил трения, возникающих на контактных поверхностях между подушками пресса и гранями куба.

1. Несмазанный куб (рис. 2, а).

Силы трения между подушками пресса и гранями куба препятствуют свободным поперечным деформациям куба и соответственно упрочняют бетон сверху и снизу. По мере удаления от торцевых граней куба влияние сил трения уменьшается, поэтому после разрушения куб приобретает форму 2-х пирамид сверху и снизу.

2. Смазанный куб (рис. 2, б).

Если устранить силы трения смазкой контактных поверхностей, прочность бетонного куба будет меньше, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными. Временное сопротивление сжатию бетона для куба с ребром 150 мм равно R, с ребром 200 мм - 0,93 R, с ребром 100 мм – 1,1 R. Это объясняется изменением эффекта обоймы с изменением размеров куба.

а) б)

Рис. 2. Характер разрушения бетонных кубов:

а – несмазанный куб; б – смазанный куб;

Δ – поперечные деформации бетона.

Призменная прочность

Так как железобетонные конструкции по форме отличаются от кубов, основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb – временное сопротивление осевому сжатию бетонных призм. Призменная прочность меньше кубиковой, и она уменьшается с увеличением отношения h/a. Влияние сил трения на среднюю часть призмы уменьшается с увеличением ее высоты и при h/a= 4 значение Rb становится стабильным и равно приблизительно 0,75 R.

Рис. 3. Характер разрушения бетонной призмы.


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.05 с.