Отступление на тему коннектомы — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Отступление на тему коннектомы

2018-01-30 169
Отступление на тему коннектомы 0.00 из 5.00 0 оценок
Заказать работу

Есть прекрасный проект, над которым сейчас работают нейробиологи, он называется проект коннектома человека (HumanConnectomeProject). Ученые пытаются создать полную детализированную карту всего человеческого мозга. Ранее никто и близко не делал такого.

Проект включает нарезку человеческого мозга на тонюсенькие пластинки — около 30 нанометров толщиной. Это 1/33 000 миллиметра.

Помимо создания великолепных изображений «ленточных» образований аксонов со схожими функциями, которые часто образуются внутри белого вещества, вроде этого —

— проект коннектома помогает визуализировать, как все это вещество упаковано в мозге. Вот подробный разбор всего, что происходит в крошечном кусочке мозга мыши (и это еще без кровеносных сосудов):

(На изображении E — полный срез мозга, а F – N — отдельные компоненты, из которых состоит E).

Итак, наша метровая коробка забита, завалена электрифицированной начинкой разной сложности. Давайте теперь вспомним, что на самом деле наша коробка — кубический миллиметр в размерах.

Инженерам нейрокомпьютерных интерфейсов нужно либо выяснить, что говорят микроскопические сомы, погребенные в этом миллиметре, либо простимулировать определенные сомы, чтобы те выполнили нужные вещи. Удачи им.

Нам было бы сложно проделать это с нашим увеличенным в 1000 раз мозгом. С мозгом, который прекрасно превращается в салфетку. Но ведь на самом деле он не такой — эта салфетка лежит поверх мозга, полного складок (которые, в наших масштабах, глубиной от 5 до 30 метров). По сути, меньше трети салфетки-коры находится на поверхности мозга — большая часть лежит в складках.

Кроме того, материала, с которым удается поработать в лаборатории, не так уж и много. Мозг покрыт множеством слоев, включая череп — который при 1000-кратном увеличении будет 7-метровой толщины. И поскольку большинство людей не очень любит, когда их череп слишком долго находится открытым — да и вообще это сомнительное мероприятие — приходится работать с крошечными леденцами мозга как можно аккуратнее и деликатнее.

И все это при том, что вы работаете с корой — но очень много интересных идей на тему НКИ имеют дело со структурами, которые много ниже, и если вы будете стоять на вершине нашего городского мозга, они будут пролегать на глубине 50-100 метров.

Только представьте, сколько всего происходит в нашем кубике — а ведь это всего лишь одна 500 000-я часть коры головного мозга. Если бы мы разбили всю нашу гигантскую кору на одинаковые метровые кубики и выстроили их в ряд, они бы растянулись на 500 километров — до самого Бостона. И если вы решите совершить обход, который займет более 100 часов при быстрой ходьбе, в любой момент вы можете остановиться и посмотреть на кубик, и вся эта сложность будет у него внутри. Все это сейчас в вашем мозге.

Neuralink Илона Маска. Часть 3-я: насколько вы должны быть счастливы, если все это вас не волнует

Ващеееее.

Вернемся к части 3: пролетая над гнездом нейронов

Как же ученые и инженеры будут справляться с этой ситуацией?

Они стараются выжать максимум из инструментов, которые у них сейчас есть — инструментов, используемых для записи или стимулирования нейронов. Давайте изучим варианты.

Инструменты НКИ

С тем, что уже было проделано, можно выделить три широких критерия, по которым оцениваются плюсы и минусы записывающего инструмента:

1) Масштаб — сколько нейронов может записываться.

2) Разрешение — насколько подробна информация, которую получает инструмент — пространственное (насколько близко ваши записи сообщают, какие из отдельных нейронов активируются) и временное (насколько хорошо можно определить, когда происходит записываемая вами активность).

3) Инвазивность — необходимо ли хирургическое вмешательство, и если да, то насколько дорогое.

Долгосрочная цель — собрать сливки со всех трех и скушать. Но пока неизбежно возникает вопрос, каким из этих критериев (один или два) вы можете пренебречь? Выбор того или иного инструмента ­— это не повышение или понижение качества, это компромисс.

Давайте посмотрим, какие инструменты используются в настоящее время:

ФМРТ

· Масштаб: большой (показывает информацию со всего мозга)

· Разрешение: от низкого к среднему — пространственное, очень низкое — временное

· Инвазивность: неинвазивный

фМРТ чаще используется не в НКИ, а как классический инструмент записи — дает вам информацию о происходящем внутри мозга.

фМРТ использует МРТ — технологию магнитно-резонансной томографии. Изобретенная в 1970-х годах, МРТ стала эволюцией рентгеновского КТ-сканирования. Вместо рентгеновских лучей, МРТ использует магнитные поля (наряду с радиоволнами и другими сигналами) для создания изображений тела и мозга. Вроде такого:

Полный набор поперечных сечений, позволяющий вам видеть голову целиком.

Весьма необычная технология.

фМРТ («функциональная» МРТ) использует технологию МРТ для отслеживания изменений кровотока. Зачем? Потому что, когда области мозга становятся более активными, они потребляют больше энергии, а значит им нужно больше кислорода — поэтому поток крови увеличивается в этой области, чтобы доставить этот кислород. Вот что может показать сканирование фМРТ:

Конечно, в мозгу всегда есть кровь — это изображение показывает, где увеличился кровоток (красный, оранжевый, желтый) и где он уменьшился (синий). И поскольку фМРТ может сканировать весь мозг, результаты будут трехмерными:

У фМРТ много медицинских применений, например, информирование врачей о том, функционируют ли определенные участки мозга после инсульта, и фМРТ очень многому научила нейробиологов о том, какие области головного мозга участвуют в работе этих функций. Сканирование также предоставляет важную информацию о том, что происходит в головном мозге в определенный момент времени, оно безопасно и неинвазивно.

Большим недостатком является разрешение. фМРТ сканирование имеет буквальное разрешение, как компьютерный экран пиксели, только вместо двухмерных, его разрешение представлено трехмерными кубическими объемными пикселями — вокселями (voxel, воксел).

ВокселифМРТ становились меньше по мере улучшения технологии, что привело к увеличению пространственного разрешения. Воксели современных фМРТ могут быть размером с кубический миллиметр. Объем мозга составляет порядка 1 200 000 мм3, поэтому сканирование фМРТ высокого разрешения делит мозг на один миллион маленьких кубиков. Проблема в том, что в нейронных масштабах это по-прежнему довольно много — каждый воксель содержи десятки тысяч нейронов. Так что, в лучшем случае, фМРТ показывает средний кровоток, втягиваемый каждой группой из 40 000 нейронов или около того.

Еще большая проблема — временное разрешение. фМРТ отслеживает кровоток, который является неточным и происходит с задержкой около секунды — вечность в мире нейронов.

ЭЭГ

· Масштабы: высокие

· Разрешение: очень низкое пространственно, средне-высокое временное

· Инвазивность: неинвазивный

Изобретенная почти сто лет назад ЭЭГ (электроэнцефалография) накладывает на голову множество электродов. Вот так:

ЭЭГ — это определенно технология, которая будет выглядеть забавно примитивной для людей 2050 года, но на данный момент это один из немногих инструментов, которые можно использовать с абсолютно неинвазивными НКИ. ЭЭГ регистрирует электрическую активность в различных областях головного мозга, отображая результаты следующим образом:

Графики ЭЭГ могут выявлять информацию о таких медицинских проблемах, как эпилепсия, отслеживать режим сна или определять состояние дозы анестезии.

В отличие от фМРТ, ЭЭГ имеет довольно хорошее временное разрешение, получая электрические сигналы от головного мозга по мере их появления — хоть череп значительно размывает временную точность (кость — плохой проводник).

Главный недостаток — пространственное разрешение. У ЭЭГ его нет. Каждый электрод регистрирует только среднее значение — векторную сумму зарядов от миллионов или миллиардов нейронов (размытое из-за черепа).

Представьте, что мозг — это бейсбольный стадион, его нейроны — это люди в толпе, а информация, которую мы хотим получить, будет вместо электрической активности производной голосовых связок. В таком случае ЭЭГ будет группой микрофонов за пределами стадиона, за его внешними стенами. Вы сможете услышать, когда толпа начнет скандировать и даже сможете предугадать, о чем она примерно кричит. Вы сможете разобрать отличительные сигналы, если будет тесная борьба или кто-то будет побеждать. Возможно, вы также разберете, если случится что-то необычное. На этом всё.

ЭКоГ

· Масштабы: высокие

· Разрешение: низкое пространственное, высокое временное

· Инвазивность: присутствует

ЭКоГ (электрокортикография) похожа на ЭЭГ, поскольку тоже использует электроды на поверхности — только помещает их под череп на поверхность мозга.

Стремно. Но эффективно — намного эффективнее ЭЭГ. Без интерференции, которую дает череп, ЭКоГ охватывает более высокое пространственное (около 1 см) и временное разрешения (5 миллисекунд). Электроды ЭКоГ можно разместить выше или ниже твердой мозговой оболочки:

Слева слои, сверху вниз: скальп, череп, твердая мозговая оболочка, арахноид, мягкая мозговая оболочка, кора, белое вещество. Справа источник сигнала: ЭЭГ, ЭКоГ, интрапаренхимальный (LFP и т. д.)

Возвращаясь к аналогии с нашим стадионом, микрофоны ЭКоГ находятся внутри стадиона и ближе к толпе. Поэтому звук будет много чище, чем у микрофонов ЭЭГ за пределами стадиона, и ЭКоГ смогут различать звуки отдельных сегментов толпы. Но это улучшение стоит денег — требует инвазивной хирургии. Но по мерками инвазивной хирургии, это вмешательство не такое уж и плохое. Как сказал мне один хирург, «поместить начинку под твердую мозговую оболочку можно относительно неинвазивно. Придется проделать дыру в голове, но это не так страшно».


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.