Глава 9. Ствол головного мозга и спинной мозг — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Глава 9. Ствол головного мозга и спинной мозг

2019-07-11 288
Глава 9. Ствол головного мозга и спинной мозг 0.00 из 5.00 0 оценок
Заказать работу

 

 

МОЗЖЕЧОК

 

Все структуры головного мозга от коры до гипоталамуса образовались из передней доли рыбообразного предка позвоночных. Все эти структуры, следовательно, можно отнести к переднему мозгу. Передний мозг, в свою очередь, можно разделить па две части. Первая — это сами полушария, которые называются конечным мозгом, поскольку этот участок можно рассматривать как конец нервной трубки, если подниматься от хвоста к голове. Вторая часть переднего мозга, в которую входят ба-зальиые ганглии, таламус и гипоталамус, относится к промежуточному мозгу.

Хотя передний мозг достиг у человека весьма внушительных, можно сказать, ошеломляющих размеров, из этого отнюдь не следует, что весь мозг состоит из переднего мозга. Под передним мозгом расположены средний мозг и задний мозг. Средний мозг у человека сравнительно мал и располагается вокруг узкого канала, который соединяет третий и четвертый желудочки. Выглядит средний мозг как толстый тяж, который направляется вертикально вниз от области таламуса. Внизу средний мозг заканчивается мостом, который назван так потому, что соединяет средний мозг с главной частью заднего мозга, в самой нижней части мозга располагается продолговатый мозг. Средний мозг, мост и продолговатый мозг вместе образуют структуру, похожую на ствол, идущий вниз и слегка назад от полушарий большого мозга. Создается впечатление, что большой мозг покоится на этих нижележащих отделах, словно плод, балансирующий на стволе.

 

По этой причине рассматриваемые в этой главе структуры мозга так и называются — ствол головного мозга. По мере продвижения вниз ствол становится тоньше и в конце концов, проходит через большое затылочное отверстие, покидая полость черепа и переходя в спинной мозг, вступая в канал, образованный позвоночником. У верхнего края большого затылочного отверстия ствол головного мозга сливается со спинным мозгом.

Сзади и сверху к стволу примыкает мозжечок, расположенный непосредственно под задней оконечностью полушарий большого мозга. У примитивных позвоночных этот участок мозга является частью заднего мозга. Подобно большому мозгу, мозжечок продольной щелью делится на две половины, которые называются полушариями мозжечка. Полушария соединяются между собой особой структурой, которую хорошо видно сзади. Это продолговатое сегментированное образование, которое из-за своего вида получило наименование червя. Так же как и в большом мозге, внутри мозжечка находится белое вещество, а серые нервные клетки расположены на его поверхности, формируя кору мозжечка. Кора мозжечка образует более мелкие и плотно упакованные извилины, а щели между ними расположены параллельными продольными линиями.

Каждое полушарие мозжечка соединено со стволом головного мозга тремя ножками, состоящими из нервных волокон. Самая верхняя ножка соединяет мозжечок со средним мозгом, следующая с мостом, а самая нижняя — с продолговатым мозгом. Через ножки мозжечок также соединяется наверху с большим мозгом, а внизу — со спинным мозгом.

Ствол мозга управляет по большей части автоматическими мышечными движениями. Например, при стоянии мы активно пользуемся мышцами, чтобы наши ноги и спина удерживали нас в вертикальном положении, невзирая на силу тяжести. Мы не осознаем эту активность, но если стоим долго, то начинаем ощущать усталость, а если мы потеряем сознание стоя, то мышцы, которые преодолевают силу земного тяготения, расслабятся, и мы рухнем на землю.

Если бы мы были вынуждены сознательно управлять своими мышцами при стоянии, чтобы не упасть, то стояние превратилось бы в деятельность, которая заняла бы все наше внимание, и мы стали бы не способны заниматься ничем больше. Но это не так, к большому счастью, должен добавить. Стояние дается нам без всяких сознательных усилий. В результате мы можем занимать свой мозг в это время другими проблемами. В итоге мы, если того требуют обстоятельства, можем легко стоять, блуждая в дебрях познания. Ни один человек не падает оттого, что его ум чем-то отвлечен. Этот автоматический контроль мышц, ответственных за стояние, управляется из центра, расположенного в стволе мозга, особенно в той его части, которая представляет собой тесно переплетенные участки белого и серого вещества, что придает этому участку сетчатый вид, почему вся структура называется ретикулярной зоной. Именно здесь фильтруется сенсорная информация в системе, которую мы уже обозначили как ретикулярную активирующую систему.

Конечно, мы не собираемся стоять вечно. Для того чтобы мы смогли сесть, мышцы, ответственные за стояние, должны расслабиться. Это осуществляется по команде из базальных ганглиев, расположенных над стволом мозга, которые посылают мышцам соответствующие импульсы. Эти импульсы позволяют телу упасть, но упасть медленно и управляемо, причем так, чтобы в результате принять положение сидя. Если мозг экспериментального животного перерезать между большим мозгом и стволом мозга, то эти расслабляющие импульсы из базальных ганглиев уже не смогут достичь мышц. В результате у животного развивается постоянная, необратимая ригидность всех мышц. Война с гравитацией становится перманентной и бескомпромиссной.

Стояние отнюдь не статично, как может показаться с первого взгляда. Человеческое тело находится при стоянии в относительно нестабильном положении, так как центр тяжести у человека расположен высоко над землей и покоится на двух, близко расположенных друг от друга опорах. (Большинство других позвоночных имеют четыре опоры, а центр тяжести у них расположен низко над землей.) Следовательно, если человек вздумает стоять не шевеля ни единым мускулом, то его свалит на землю любой толчок в плечо. В обычных реальных условиях человек автоматически изменит направление и мощность усилий, чтобы противодействовать силе, стремящейся свалить его на землю. Он расставит ноги и отпрянет назад. Если он и упадет, то только после борьбы.

Силы, которые стремятся вывести человека из равновесия, действуют постоянно. Если не найдется доброго приятеля, который решит испытать, насколько прочно вы стоите, то вы сможете самопроизвольно менять местоположение центра тяжести — потянуться, привстать на цыпочки, наклониться вперед. Вы можете выдержать напор порыва сильного ветра. Короче говоря, вы всегда стремитесь упасть в ту или иную сторону, а мышцы туловища и ног постоянно корректируют свое напряжение, чтобы удержать вас от падения.

Опять-таки здесь существует тесная связь между стволом мозга и базальными ганглиями. Общее положение тела относительно силы притяжения оценивается структурами внутреннего уха, будут обсуждаться в этой книге в соответствующей главе. Нервные импульсы из внутреннего принимаются в стволе головного мозга и воспринимаются в стволе головного мозга и в базальных ганглиях. Кроме того, импульсы от суставов постоянно поступают по активирующей ретикулярной формации в тот же ствол мозга, так что там определяется, какие мышцы надо бить, а какие — напрячь, так чтобы сохранить надежное равновесие.

Это не причиняет нам никакого беспокойства более того, постоянная необходимость из мышечного напряжения для сохранения равновесия оказывается чрезвычайно полезной. Если мы представим себе человека в состоянии идеального равновесия, то увидели бы, что одни и те же мышцы должны находиться в постоянном неизменном напряжении. В этом случае очень наступит утомление. При постоянной корректировке положения тела в разное время в игру вступают разные мышцы, и каждая имеет шанс отдохнуть, пока другие находятся в напряжении. Действительно, когда мы вынуждены долго стоять на одном месте, мы, преувеличивая естественные движения, начинаем самопроизвольно менять положение, смещая в разных направлениях центр тяжести своего тела. Мы делаем это, переминаясь с ноги на ногу или смещая вес в части тела.

Ходьба представляет собой вывод тела из состояния равновесия рывком вперед. В следующий момент мы выносим вперед ногу, чтобы поймать свое падающее тело и вновь придать ему равновесие. Научиться ходить — стоящий подвиг для маленького ребенка, первых попытках он бросается вперед, не задумываясь о последствиях, и, если его внимание чем-нибудь отвлекается, он падает.

Однако ходьба требует ритмических движений. Одни и те же мышцы то сокращаются, то расслабляются, образуя фиксированный паттерн, который повторяется снова и снова с каждым шагом. Со временем контроль над ходьбой полностью переходит к стволу мозга, который поддерживает постоянство движений рук и ног, не требуя нашего сознательного участия в этом процессе. Мы можем идти и одновременно увлеченно беседовать или с большим интересом читать книгу.

Постоянная смена утраты и обретения равновесия во время стояния и ходьбы требует участия механизмов обратной связи. Так, если тело вышло из состояния равновесия и если базальные ганглии начали изменять степень напряжения мышц, чтобы восстановить равновесие, то чувствительные импульсы должны восприниматься ганглиями в каждый данный момент времени, чтобы сигнализировать мозгу о выходе из равновесия в этот момент для того, чтобы базальные ганглии успели подготовить к сокращению нужные мышцы (это и есть обратная связь). Таким образом, организм должен обладать способностью заглядывать в будущее.

Причину этого можно лучше понять, если прибегнуть к механической аналогии. Если вы делаете поворот на автомобиле, то должны начать поворачивать рулевое колесо до того, как входите в поворот, поворачивая его все больше и больше, по мере вхождения, пока поворот руля не достигнет максимума в середине поворота. Если бы вы вошли в поворот с неповернутым рулевым колесом, то вам пришлось бы поворачивать очень круто. То же самое, только в обратном порядке, происходит на выходе из поворота. Вы должны начать выправлять руль до того, как начался выход из поворота, то есть в самой его середине, и поворачивать руль надо так, чтобы он придал колесам прямое положение там, где поворот кончается. Если бы вы начали крутить баранку, когда вышли на прямой отрезок пути, то, чтобы не врезаться в бордюр, вам пришлось бы очень быстро выправлять положение машины, резко поворачивая руль в противоположном направлении.

Итак, вы видите, что правильное выполнение поворота требует умения прогнозировать ситуацию, заглядывать вперед, учитывать не только настоящее положение, но и положение, которое возник нет через несколько мгновений. Для начинающего это не легкая задача. Учась водить машину, человек вынужден огибать углы очень медленно, чтобы не поворачивать лихорадочно, сначала в одном направлении, а потом в другом. По мере накопления опыта новичок начинает все более уверенно и быстро входить в поворот, а потом делает это без участия сознания, мягко вписываясь в поворот каждый раз — ну, или почти каждый.

Эта ситуация в точности похожа на ту, которая складывается в управляющих центрах нервной системы при сохранении равновесия или при необходимости совершить какое-то целенаправленное произвольное движение. Предположим, вам надо взять со стола карандаш. Рука начинает быстро двигаться вперед, но скорость ее движения уменьшается по мере приближения к карандашу. Пальцы должны сомкнуться, чтобы прикоснуться к желаемому предмету. Если рука отклоняется в сторону, то происходит немедленная, соответствующая корректировка движения. Если видно, что рука проходит дальше карандаша, то скорость ее движения замедляется, если же рука не доходит, то движение продолжается до требуемого расстояния. Все эти подправляющие движения и корректировки происходят неосознанно, и вы можете поклясться, что в действительности никакой корректировки не происходит. Но она происходит, и именно по этой причине мы сначала смотрим на карандаш, чтобы взять его, на челюсть противника, прежде чем ударить по ней кулаком, и на шнурки ботинок, прежде чем начать их завязывать. Именно сигналы, которые глаза постоянно посылают в головной мозг, позволяют нам корректировать и уточнять объемы и направление необходимых движений. Если вы захотите взять карандаш не глядя на него, то, даже если вы знаете, где он находится, вам придется искать его на ощупь, и возможно, вы возьмете его в руку не с первой попытки.

Но зрение нужно для подобных действий не всегда. Если вас попросят прикоснуться к кончику собственного носа, вы сделаете это даже в полной темноте. Обычно человек ощущает взаимное расположение частей своего тела с помощью соматосенсорных систем. Подобным же образом можно научиться печатать на машинке или вязать, не глядя на клавиатуру или на спицы, но в этих случаях пальцы совершают весьма ограниченные по объему движения и вероятность ошибки или отклонения очень мала.

Основная роль в корректировке и регулировке движений такого рода принадлежит мозжечку. Он предвосхищает события, заглядывает вперед и предсказывает положение руки за несколько мгновений до того, как произойдет реальное действие, что позволяет должным образом организовать необходимое движение. Когда эта система отказывает, положение становится поистине драматическим. Рука, готовая взять карандаш, промахивается, движется назад, снова промахивается, опять направляется вперед, и эти ошибки повторяются снова и снова, практически до бесконечности. Такие хаотические отклонения от правильного положения напоминают лихорадочные попытки новичка сделать поворот на слишком большой скорости. На флоте такие движения носа судна называют «рысканьем». Поражение мозжечка и приводит к такому «рысканью», а всякое движение, требующее согласованной работы нескольких мышц, становится затрудненным или вообще невозможным. Попытка бежать оборачивается неизбежным мгновенным падением. Движения становятся гротескно резкими и толчкообразными, и даже попытка коснуться пальцем копчика носа сопровождается досадным промахом. Такое состояние в медицине обозначается греческим термином «атаксия» (беспорядочность). Церебральный паралич — это нарушение способности пользоваться мускулатурой в результате повреждения мозга, происшедшего во время внутриутробного развития плода или при тяжелых осложненных родах. Около 4 % случаев церебрального паралича сопровождаются атаксией.

Ствол мозга управляет также функциями и движением желудочно-кишечного тракта. Например, скорость отделения слюны регулируется группами нервных клеток, расположенных в верхней части продолговатого мозга и в нижней части моста. Вид и запах пищи или даже мысли о ней активируют эти клетки, которые, в свою очередь, стимулируют слюноотделение. Наоборот, страх или чувство напряжения подавляют активность этих клеток, и во рту «пересыхает». Процесс глотания, требующий согласованного участия мышц глотки и волнообразных сокращений мышц пищевода, с помощью которых пища проталкивается в желудок, также контролируется клетками ствола головного мозга.

Деятельность дыхательных мышц также контролируется особыми отделами ствола. Дыхание можно регулировать и произвольно, а значит, этот процесс не обходится без участия большого мозга. Мы можем заставить себя дышать быстрее или медленнее, поверхностно или глубоко, можем даже на некоторое время вообще задержать дыхание.

 

Однако такое произвольное вмешательство в ритм дыхания очень скоро становится весьма утомительным, и автоматический контроль снова берет на себя управление дыханием.

Под стволом головного мозга, за пределами большого затылочного отверстия, находится самая нижняя часть центральной нервной системы — спинной мозг. Это остаток недифференцированной нервной трубки, доставшийся нам в наследство от древних хордовых. На поперечном разрезе спинной мозг имеет почти овальную форму. По задней поверхности спинного мозга проходит глубокая борозда, более широкая борозда помельче проходит вдоль передней поверхности спинного мозга. Вместе эти борозды почти, но не совсем делят спинной мозг на две половины — правую и левую, которые представляют собой зеркальные отражения друг друга. В оси спинного мозга проходит центральный канал, который у взрослых обычно зарастает. Этот канал представляет собой рудимент полости первичной нервной трубки хордовых.

Внутренняя часть спинного мозга заполнена массой нервных клеток, так что у спинного мозга, так же как и у головного, есть свое серое вещество, правда, в отличие от последнего, оно находится не на поверхности, а в глубине вещества спинного мозга. В нем серое вещество формирует две колонки, спускающиеся сверху донизу в каждой из половин. Эти две колонки соединены узкой полоской серого вещества, окружающей центральный канал. В результате на разрезе серое вещество напоминает несколько искаженную латинскую букву «Н». Как видно на иллюстрации, нижние ножки буквы направлены назад, к спине. Эти ножки довольно длинны и доходят почти до поверхности мозга. Они называются задними рогами. Верхние ножки буквы короче и толще, они направлены вперед, как говорят в медицине, в вентральном направлении. Это передние или вентральные рога. Серое вещество окружено массой нервных волокон, которые благодаря миелиновым оболочкам имеют беловатый цвет и называются белым веществом спинного мозга. Таким образом, еще раз повторю, что в спинном мозге серое вещество находится внутри вещества мозга, а не на поверхности, как в головном мозге.

Спинной мозг проходит не по всей длине позвоночного канала. Он заканчивается приблизительно на уровне первого или второго поясничного позвонка, в области поясницы. Таким образом, спинной мозг имеет в длину всего лишь около 18 дюймов. Ширина его составляет около полдюйма, а вес у взрослых достигает 30 г.

 

ЧЕРЕПНО-МОЗГОВЫЕ НЕРВЫ

 

Пределами головного и спинного мозга, которые составляют центральную нервную систему, находится периферическая нервная система. Эта последняя состоит из различных нервов, которые соединяют определенные части центральной нервной системы с определенными органами. Нервы, в свою очередь, сложены из пучков, содержащих сотни, а иногда и тысячи отдельных нервных волокон. Некоторые нервные волокна проводят импульсы от различных органов в центральную нервную систему и называются поэтому афферентными (от латинского слова «приношу»). Так как импульсы, передающиеся к головному и спинному мозгу, интерпретируются центральной нервной системой чувствительные, то и неравные волокна такого типа называются чувствительными, или сенсорными (от латинского слова «чувство», «ощущение»). Есть также нервные волокна, которые передают импульсы из центральной нервной системы к различным органам. Эти волокна называются эфферентными (от латинского слова «выношу»). Эти импульсы порождают ответы в органах, а поскольку самыми заметными ответами являются движения мы то и сами волокна называются часто просто двигательными, или моторными.

Есть в организме несколько чисто сенсор нервов, которые содержат исключительно чувствительные волокна. Есть также двигательные нервы, которые содержат исключительно двигательные волокна. Тем не менее, большинство нервов являются смешанными, так как содержат в своем составе как чувствительные, так и двигательные волокна. Нервы не всегда состоят только из волокон, и да, в дополнение к ним, они окружены скоплениями тел нервных клеток, с которыми эти воле соединены. Такие скопления нервных клеток называются узлами, или ганглиями.

В человеческом организме есть 43 пары нервов и все они ведут к центральной нервной системе этих пар 12 направляются к головному мозгу и единены непосредственно с ним. Эти нервы, вследствие такого анатомического положения, называются черепно-мозговыми. Остальные 31 пара соединены со спинным мозгом. Черепно-мозговые не просто нумеруются римскими цифрами от первого до двенадцатого, в последовательности, в коте эти нервы соединяются с головным мозгом от большого мозга до продолговатого мозга. Каждый нервов имеет собственное название, которые и числены ниже.

 

I. Обонятельный нерв. Каждый нерв состоит из множества близко расположенных отдельных тонких нервов (их около двадцати), которые начинаются в слизистой оболочке верхней части носа. Волокна обонятельных нервов поднимаются вверх и, пройдя сквозь мелкие отверстия в костях, образующих основание черепа, входят в обонятельные доли, небольшие выросты мозга, которые находятся непосредственно над основанием черепа. Как подразумевает само название, эти нервы отвечают за восприятие запахов.

Обонятельный нерв — это единственный нерв, который соединяется непосредственно с большим (конечным) мозгом, словно напоминая нам о тех временах, когда головной мозг млекопитающих вообще был обонятельным органом. Остальные 11 пар черепно-мозговых нервов связаны со стволом головного мозга.

 

II. Зрительный нерв. О функции этого нерва можно сразу судить по его названию. Волокна этого нерва начинаются в сетчатке глаза, направляются кзади и встречаются с волокнами противоположного нерва этой пары на уровне среднего мозга. В месте этого соединения часть волокон переходит в нерв противоположной стороны, а часть остается в нерве «своей» стороны. Таким образом, волокна образуют перекрест, который медики называют греческим словом «хиазма». Зрительный нерв не является нервом в истинном смысле этого слова — это своеобразный вырост самого мозга.

 

III. Глазодвигательный нерв. Этот нерв выходит из среднего мозга и направляется ко всем, кроме двух, мышцам, отвечающим за движения глазных яблок. Ясно, что этот нерв управляет движениями глаз.

 

IV. Блоковый нерв. Это самый маленький из черепно-мозговых нервов. Он выходит из среднего мозга и направляется к мышце, смещающей глазное яблоко, к одной из двух, которые не иннервируются глазодвигательным нервом. Мышца, к которой направляется этот нерв, проходит через кольцо соединительной ткани и напоминает блок, отсюда и название нерва.

V. Тройничный нерв. Это самый крупный из черепно-мозговых нервов. Обонятельный и зрительный нервы являются чисто чувствительными, а глазодвигательный и блоковый — чисто двигательными. В отличие от них, тройничный нерв является смешанным и содержит как чувствительные, так и двигательные волокна. Нерв соединяется с мостом в различных его участках. Чувствительные волокна образуют три группы (отсюда и название нерва) и соединены с различными частями лица. Глазничный нерв снабжает кожу передней половины свода черепа, лба, верхнего века и носа. Верхнечелюстной нерв снабжает чувствительными волокнами кожу нижнего века, части щеки и верхней губы. Нижнечелюстной нерв снабжает чувствительными волокнами кожу нижней челюсти и щеки ниже тех мест, которые иннервируются верхнечелюстным нервом. Глазничный и верхнечелюстной нервы являются чисто чувствительными, а нижнечелюстной — смешанным. Его двигательные волокна управляют жевательными мышцами.

Невралгия (от греческого словосочетания «боль нерва») может быть весьма мучительной. При спастической форме боль сочетается с судорожными подергиваниями лицевой мускулатуры. Эти подергивания обычно называют тиком. Болезненный мышечный спазм обычно называется французским термином tic douloureux, то есть болезненным тиком.

 

VI. Отводящий нерв. Этот нерв начинается в мосту немного ниже места его соединения с продолговатым мозгом и направляется к мышце, отводящей глазное яблоко. Эта мышца тянет глазное яблоко таким образом, что зрачок смещается кнаружи от средней линии, от этого нерв и получил свое название. Это чисто двигательный нерв. (Может показаться удивительным, что движения глазного яблока контролируются тремя нервами из двенадцати. Отводящий нерв и блоковый отвечают за одну мышцу каждый, а глазодвигательный нерв управляет всеми остальными. Однако, ввиду важности зрения, этот факт не кажется очень удивительным.)

 

VII. Лицевой нерв. Он начинается в области моста в месте несколько выше его соединения с продолговатым мозгом. Так же как тройничный нерв, лицевой нерв является смешанным. Его чувствительные волокна берут начало в передних двух третях языка, и именно по нему вкусовые ощущения достигают головного мозга. Эти же волокна иннервируют слюнные железы и слезные железы. Двигательные волокна снабжают различные мимические мышцы, которые при взаимодействии придают лицу то или иное выражение.

 

VIII. Слуховой нерв. Этот чувствительный нерв входит в головной мозг в месте соединения моста с продолговатым мозгом. Начинается он во внутреннем ухе и контролирует слуховые ощущения. В составе слухового нерва идут также волокна от лабиринта, структуры, которая управляет чувством равновесия (вестибулярного аппарата). Поэтому нерв этот называют также преддверно-улитковым («преддверие» по-латыни — «вестибулум»), а улитка — это орган, который воспринимает звуковые волны.

 

IX. Языкоглоточный нерв. Этот смешанный нерв начинается в продолговатом мозге близ его соединения с мостом и иннервирует слизистую оболочку задней части языка и глотки. Это чувствительные волокна. Двигательные волокна идут к мышцам глотки.

X. Блуждающий нерв. Это еще один смешанный нерв. Свое название он получил потому, что снабжает своими ветвями практически весь организм, в отличие от прочих черепно-мозговых нервов. Блуждающий нерв начинается в продолговатом мозге в виде последовательности нескольких корешков, которые, пройдя сквозь основание черепа, соединяются в один нервный ствол. Некоторые двигательные волокна снабжают мускулатуру гортани и глотки, другие спускаются ниже и иннервируют мышцы бронхов, сердечную мышцу и мышцы желудка и кишечника. Кроме того, блуждающий нерв снабжает своими ветвями поджелудочную железу, регулируя скорость секреции панкреатических соков, хотя по большей части эту работу, как я уже упоминал в главе 1, выполняет секретин.

 

XI. Добавочный нерв. Этот двигательный нерв снабжает мышцы глотки, а также некоторые мышцы рук и плеч. Некоторые его волокна идут в составе блуждающего нерва. Часть волокон добавочный нерв получает из спинно-мозговых корешков. Свое название нерв получил из-за того, что в его составе есть добавочные волокна спинно-мозговых нервов, а сам он является добавочным по отношению к блуждающему нерву.

 

XII. Подъязычный нерв. Это еще один двигательный нерв, который берет начало в продолговатом мозге и снабжает мышцы, осуществляющие движения языка.

 

СПИННО-МОЗГОВЫЕ НЕРВЫ

 

Спинно-мозговые нервы в нескольких отношениях сильно отличаются от черепно-мозговых нервов. Во-первых, своим более регулярным расположением. Черепные нервы соединены с головным мозгом неравномерно, большей частью в том месте, где мост соединяется с продолговатым мозгом. Напротив, спинно-мозговые нервы выходят из спинного мозга через равномерные промежутки, что имеет определенный смысл, если мы вспомним естественную историю хордовых животных. Хордовые — это один из типов животных, тела которых сегментированы. Сегментация — это разделение структур тела па похожие отделы, подобно тому, как поезд делится на вагоны. (К другим типам сегментированных животных относятся членистоногие, включая насекомых, паукообразных, многоножек и ракообразных; а также кольчатые черви).

Хордовые в своем развитии достигли такой стадии, когда сегментация перестала быть отчетливо выраженной. Явным признаком сегментации у человека является ряд повторяющихся позвонков (по одному на каждый сегмент) позвоночного столба и ребра, которые присоединены к двенадцати позвонкам. Нервная система также несет на себе отпечаток сегментации, так как спинно-мозговые нервы выходят из спинного мозга через повторяющиеся промежутки сквозь межпозвоночные отверстия на всем протяжении позвоночника.

Черепно-мозговые нервы, как мы с вами убедились, являются либо двигательными, либо чувствительными, либо смешанными, а спинно-мозговые нервы — все смешанные. В каждом сегменте спинного мозга берет начало одна пара нервов. Один нерв пары выходит из правой половины спинного мозга, второй — из левой. Нервные волокна берут начало в сером веществе спинного мозга. Более того, каждый нерв соединен как с передним, так и с. задним рогом серого вещества. Таким образом, у каждого нерва есть передний корешок и задний корешок. В передний корешок из спинного входят двигательные волокна, и из заднего корешка в спинной мозг входят чувствительные волокна. Тела клеток двигательных волокон находятся в спинио мозге, в его сером веществе. В противоположное этому тела клеток чувствительных волокон располагаются вне спинного мозга. Тела чувствительны: волокон называются ганглиями заднего корешка.

Каждая пара спинно-мозговых нервов формируется из слияния переднего и заднего корешков на каждой стороне спинного мозга. Первая пар; покидает позвоночный канал в промежутке между черепом и первым позвонком, вторая пара — между первым и вторым позвонком и так далее. Первые семь позвонков позвоночного столба со ставляют шейный отдел позвоночника и называются поэтому шейными позвонками. Соответственно, первые восемь пар спинно-мозговых нервов, первая из которых проходит над первым шейным позвонком, а восьмая — под седьмым, называются шейными нервами.

Ниже шейных позвонков находятся двенадцать грудных позвонков, и из-под каждого из них выходит очередная пара спинно-мозговых нервов, которые, естественно, образуют грудные спинно-мозговые нервы (межреберные нервы). Поскольку ниже грудных позвонков расположены поясничные позвонки (их пять), постольку им соответствуют пять пар поясничных нервов. Под поясничными позвонками расположен крестец. У взрослого он кажется одной костью, хотя у плода он состоит из отдельных позвонков. В послеродовом периоде крестцовые позвонки постепенно срастаются для образования более прочного основания для нашего опорно-двигателыюго аппарата. Однако надо заметить, что образование нервов опередило такое развитие событий, и из крестца выходит еще пять пар крестцовых нервов. И наконец, в самом нижнем конце позвоночника расположены еще четыре похожих на пуговицы позвонка, которые вместе образуют копчик. Из этого отдела выходит одна пара спинно-мозговых нервов, которые здесь называются копчиковыми.

Итого, в сумме получаем 8 шейных нервов, 12 грудных (межреберных) нервов, 5 поясничных нервов, 5 крестцовых и 1 копчиковый, что и дает всего 31 пару спинно-мозговых нервов.

Если бы позвоночный столб и спинной мозг имели одинаковую длину, то можно было бы ожидать, что сегменты спинного мозга идут вровень с позвонками, и каждый следующий нерв выходит из позвоночника горизонтально. Но это не так, позвоночный столб приблизительно на десять дюймов длиннее, чем спинной мозг. Следовательно, сегменты спинного мозга имеют меньшую высоту, чем позвонки.

При продвижении по ходу спинного мозга сверху вниз каждая пара нервов должна проделывать все более длинный отвесный путь, чтобы выйти из позвоночного канала из-под «своего» позвонка. Чем дальше вниз, тем длиннее становится этот вертикальный отрезок пути. Под концом спинного мозга в позвоночном канале находится конгломерат из десяти (вначале) пар нервов, которые идут вниз по каналу, и у каждого следующего межпозвоночного отверстия они одна за другой выходят из позвоночника. Таким образом, вся нижняя часть позвоночного канала заполнена грубыми, параллельно расположенными нитями, которые в совокупности напоминают по виду конский хвост. Это образование, согласно анатомической номенклатуре, так и называется — cauda equina (конский хвост, лат.). Если для проведения хирургической операции надо обезболить нижнюю часть тела, то анестетик (обезболивающее вещество) вводят именно в область конского хвоста, но не выше, чтобы не повредить вещество спинного мозга. По месту пункции канала позвоночника эта анестезия так и называется каудальной, то есть хвостовой.

После того как нерв покидает просвет спинномозгового канала, он сразу делится на две ветви — дорзальную, которая направляется к мышцам и органам спины, и вентральную, которая направляется к остальным частям тела.

Вообще говоря, согласно общему плану строения тела хордовых животных, нервы каждого сегмента снабжают органы в пределах одного, своего, сегмента. Даже у человека нервы первых четырех шейных сегментов снабжают окончаниями кожу и мышцы шеи, а нервы следующих четырех шейных сегментов снабжают кожу и мышцы верхней конечности. То же самое касается нервов поясничной области, которые снабжают окончаниями кожу и мышцы нижних конечностей. Здесь находится самый длинный нерв — седалищный. Он выходит из полости таза и иннервирует заднюю поверхность бедра, голени и стопы. По-латыни этот нерв называется nervus ischiadicus, то есть нерв, «реагирующий на боль в бедре». Воспаление седалищного нерпа бывает, как правило, очень болезненным. Эта форма невралгии настолько широко распространена, что заслужила собственное наименование — ишиас.

Однако человеческое тело не удается разделить на четко отличающиеся друг от друга сегменты. Во-первых, сегменты несколько искажены в результате эволюционных изменений, которые претерпели примитивные хордовые в ходе своего филогенетического развития. Вот яркая иллюстрация: диафрагма — это плоская мышца, отделяющая грудную полость от полости живота. Можно ожидать, что эта мышца иннервируется грудными нервами, но в действительности это не так. В эмбриональном периоде диафрагма формируется в области шеи плода, поэтому логично предположить, что она снабжается шейными нервами. Так в действительности и есть. Потом диафрагма спускается ниже и «тянет» за собой «свои» нервные стволы.

Кроме того, многие мышцы и другие органы формируются в местах, где к ним подходят нервы из двух прилежащих друг к другу сегментов. Такое перекрывание встречается весьма часто, и существует мало таких мышц, которые не получали бы иннервацию от двух сегментов. Это повышает надежность всей системы, поскольку в этом случае повреждение какого-либо нерва, конечно, ослабляет мышцу, но не приводит к полному ее параличу.

И наконец, сами нервы не находятся в полной изоляции друг от друга после того, как покидают спинной мозг. Несколько близлежащих нервов часто склонны переплетаться друг с другом, в результате чего образуются структуры, которые называются нервными сплетениями. При этом каждый нерв не теряет своей индивидуальности, но их переплетение настолько тесное, что практически невозможно проследить ход каждого индивидуального нерва в сплетении. Например, первые четыре нерва шейного отдела спинного мозга образуют шейное сплетение, а остальные четыре шейных нерва и четыре верхних грудных нерва образуют плечевое сплетение, так как оно располагается на уровне верхней части плеча. Другие грудные нервы не образуют сплетений, представляя собой индивидуальные межреберные нервы. Поясничные нервы вновь образуют сплетение, естественно, поясничное. Крестцовые нервы не отстают от поясничных и образуют свое, крестцовое сплетение.

Вообще, если происходит повреждение спинного мозга вследствие его заболевания или травмы, то в половине тела, расположенной ниже повреждения, наступает полная потеря чувствительности и развивается паралич. Если спинной мозг повреждается выше четвертого шейного позвонка, то развивается паралич грудной клетки и дыхания. Именно поэтому так опасно «ломать шею». Смерть при повешении наступает не столько от перелома шейных позвонков, сколько от разрыва спинного мозга в шейном отделе.

Различные спинно-мозговые нервы функционируют не изолированно, а в строгом взаимодействии друг с другом и с головным мозгом. Белое вещество спинного мозга состоит из пучков нервных волокон, которые идут вверх и вниз по ходу спинного мозга, соединяя между собой различные его части. Те волокна, которые передают импульсы вниз от головного мозга, называются нисходящими путями (трактами), а те, которые передают импульсы вверх, к головному мозгу, называются восходящими путями (трактами).

Я уже упоминал пирамидную систему — один из нисходящих путей. Этот путь б<


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.061 с.