Электрическая проводимость растворов. Жидкости и ткани организма, как проводники электричества второго рода. — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Электрическая проводимость растворов. Жидкости и ткани организма, как проводники электричества второго рода.

2018-01-13 588
Электрическая проводимость растворов. Жидкости и ткани организма, как проводники электричества второго рода. 0.00 из 5.00 0 оценок
Заказать работу

Под прохождением электрического тока через вещество подразумевают направленное движение (перенос) электрических зарядов. В зависимости от природы их носителя различают проводники первого рода и проводники второго рода.

В проводниках первого рода перенос электрического заряда осуществляется за счет направленного движения электронов. К ним относятся главным образом сплавы металлов, металлы и их расплавы.

В проводниках второго рода перенос электрического заряда осуществляется за счет направленного движения ионов. К ним относятся все электролиты. Причем в большинстве случаев используются растворы или расплавы данных соединений, так как именно в таких системах за счет действия растворителя или высокой температуры образуются в достаточных количествах свободные ионы, способные перемещаться под действием внешнего электрического поля.

Способность вещества проводить электрический ток количественно характеризуется электропроводностью L, которую можно предсказать как величину, обратную сопротивлению проводника R:

где ρ – удельное сопротивление; - удельная электрическая проводимость; S – площадь сечения проводника; l – длина проводника.

Электрическая проводимость в растворах электролита зависит от числа ионов в объёме раствора между электродами и скорости их движения.

Для оценки проводимости растворов и влияния на неё различных факторов применяют две величины: удельную (Χ) и молярную (λ) электрическую проводимость.

Удельной электрической проводимостью (Χ) называют электропроводность раствора, находящегося между параллельными электродами площадью 1 см2, расположенными на расстоянии 1 см (измеряется в См·см-1 или См·м-1).Удельная электрическая проводимость раствора электролита зависит от природы электролита, концентрации раствора и температуры.

Молярная электрическая проводимость – мера электрической проводимости всех ионов, образующихся при диссоциации 1 моля электролита при данной концентрации.

Молярная электрическая проводимость равна электрической проводимости такого объёма (V,см3) раствора, в котором содержится 1 моль растворённого электролита, причём электроды расположены на расстоянии 1 см друг от друга.

Из определения удельной и молярной электрических проводимостей следует, что они связаны соотношением:

где С – концентрация, моль/дм3; λ – молярная электрическая проводимость, См·см2/моль; Χ – удельная электрическая проводимость, См/см.

Молярная электрическая проводимость слабых электролитов меньше, чем сильных; так как даже при низких концентрациях степень диссоциации слабых электролитов мала (α‹1). Следовательно, несмотря на то, что в объёме раствора, заключённого между электродами, содержится 1 моль электролита, переносчиков электрического тока – ионов в данном объёме меньше, чем в растворе сильного электролита. Повышение молярной электрической проводимости слабых электролитов при разбавлении растворов связано с увеличением степени диссоциации.

Для слабых электролитов отношение молярной электропроводности раствора при данном разбавлении (λ) к молярной электропроводности при бесконечно большом разбавлении (λº) характеризует истинную степень электролитической диссоциации. Степень диссоциации электролита в растворе заданной концентрации можно рассчитать, измерив молярную электрическую проводимость этого раствора и зная λº.

У слабых электролитов с разбавлением раствора увеличивается степень электролитической диссоциации и молярная электропроводность; константа же диссоциации при неизменной температуре остаётся постоянной величиной (закон разбавления Оствальда). Константа диссоциации Кдис, α, λ и концентрация (разбавление) подобных растворов связаны между собою следующими уравнениями:

Кдис =

 

Кдис =

или

Кдис = ,

где V=1/C – разбавление раствора, л/г-экв.

Для сильных электролитов, диссоциирующих полностью (α=1),

Уменьшение молярной электрической проводимости при переходе от бесконечно разбавленного раствора к растворам конечных концентраций у сильных электролитов связано только с уменьшением скоростей движения ионов. Сильные электролиты не подчиняются закону разбавления.

 

 

Биотка­ни — это проводники II рода.

При наличии разницы электрического напряжения на двух то­ках металлического проводника электрический ток пойдет в нем от точки, имеющей большой потенциал, к точке с меньшим потен­циалом (ток течет). Если эта разница напряжения между точками будет поддерживаться некоторое время, то ток получит одно на­правление в течение всего этого времени, т.е. по проводнику уста­новится течение постоянного тока. Он будет иметь и постоянную силу в случае, когда разница потенциалов, т.е. электродвижущая сила (напряжение), не будет изменяться.

При прохожде­нии постоянного тока через тело человека возникает постоянное электрическое иоле, т.е. человеческий организм становится слож­ным электрическим проводником. Организм в целом, а также его различные ткани представляют собой сложный электролитический раствор. Величина электропроводности зависит от содержания в тканях жидкости.

Жидкие среды организма: кровь, лимфа, моча, спинномозговая жидкость — обладают наибольшей электропроводностью.

К хорошим проводникам также относятся внутренние органы и мышечная ткань, а к плохим - кость, жировая ткань. Большим сопротивлением проводимости обладает кожа, особенно ее роговой слой. В коже ток проходит в основном через протоки потовых и сальных желез, межклеточные пространства эпидермиса.

Ионное произведение воды.

Вода – слабый электролит, она диссоциирует в незначительной степени (при температуре 298 K на ионы распадается 1 молекула из 5,5х108). Однако образующиеся при диссоциации воды ионы играют исключительно важную роль в биологических процессах. Поэтому необходимо уметь количественно выражать меру диссоциации воды. Выражение для константы равновесия диссоциации воды:

При температуре 298 К эта величина равна 1,8 х 10-16 моль/л. Так как диссоциации воды мала, её концентрацию можно считать постоянной и рассчитать по формуле:

2О] = m /Mr

где: m – масса 1л воды, Mr – её молярная масса. Подставив числовые значения этих величин в уравнение 1.2, получаем: 1000 г/л / 18 г/моль = 55,5 моль/л. Умножив обе части уравнения 1.1 на концентрацию воды, получаем:

 

Кравн.2О] = [Н+][ОН-]

и, подставляя числовые значения, получаем:

 

К w = 1,8 х 10-16 моль/л х 55,5 моль/л = 10-14 моль22,

где К w – ионное произведение воды. С ростом температуры увеличивается число диссоциациировавших молекул воды и, следовательно, увеличивается ионное произведение воды.

Если [Н+] = [ОН-], то раствор имеет нейтральную реакцию, если преобладают ионы Н+, то раствор кислый, если ОН- – щелочной.

В 1909 г. Зёренсен предложил использовать для выражения концентрации протонов водородный показатель – рН, равный десятичному логарифму концентрации протонов, взятому с противоположным знаком:

pH = -lg [Н+]

Так как ионное произведение воды для данной температуры – величина постоянная, увеличение концентрации одного из ионов влечёт снижение концентрации другого. Зная рН, легко вычислить рОН: рОН = 14 – рН и наоборот.

pH может принимать значения от 1 до 14. Среду со значением рН от 0 до 3 называют сильно кислой, 3-6 – кислой, 7 – нейтральной, 8-10 – слабо щелочной, 11-14 – сильно щелочной.

Биологическое значение постоянства рН состоит в том, что ферменты, контролирующие скорости протекания химических реакций в организме, будучи белками, очень чувствительны к колебаниям рН. Даже незначительный сдвиг реакции среды от оптимума для данного фермента приводит к существенному снижению его биологической активности, а, следовательно, к серьёзным метаболическим нарушениям. Вот почему значения водородного показателя среды поддерживается в узких рамках.

Надо отметить, что сами значения рН в разных частях организма могут существенно отличаться. Так, рН желудочного сока составляет 1,5-2,3; слюны – 6,8; мочи – 5,0-6,5; дуоденального содержимого – 7,6-7,8; крови – 7,36-7,42.

Поддержание оптимального значения реакции среды в различных частях организма достигается благодаря согласованной работе буферных систем и органов выделения.

9. Методы определения рН растворов. Индикаторы.

pH можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

1. Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы - органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах - либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы. Их преимуществом является дешевизна, быстрота и наглядность исследования.

Таблица 1


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.