Классификация реакций, применяющихся в кинетике: гомогенные, гетерогенные, микрогетерогенные; простые и сложные (параллельные, последовательные, сопряженные, цепные) — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Классификация реакций, применяющихся в кинетике: гомогенные, гетерогенные, микрогетерогенные; простые и сложные (параллельные, последовательные, сопряженные, цепные)

2018-01-13 978
Классификация реакций, применяющихся в кинетике: гомогенные, гетерогенные, микрогетерогенные; простые и сложные (параллельные, последовательные, сопряженные, цепные) 0.00 из 5.00 0 оценок
Заказать работу

Гомогенная реакция происходит в гомогенной системе и осуще­ствляется во всем объеме этой системы.

Гетерогенная реакция происходит между веществами, образую­щими гетерогенную систему. Она проходит только на поверхности раздела фаз этой системы. Например:

Fe + 2НСl→FeCl2 + Н2

Растворение металла в кислоте может происходить только на поверхности металла, так как только здесь контактируют друг с дру­гом оба реагирующих вещества.

Микрогетерогенный катализ - это такой тип катализа, когда катализатор и реагенты находятся в коллоидно-дисперсном состоянии. Размеры частичек ферментов близки к размерам мицелл коллоидных растворов – 1-100 нм. По отношению к субстратам, частички которых часто намного меньше, катализаторы являются гетерогенными.

Различают простые и сложные реакции. Простыми, элементар­ными являются одностадийные реакции. Например:

Н2 + I2 → 2HI, СH3-N=N-CH3 → C2H6 + N2

Простых реакций мало, большинство процессов - сложные. Сложными называются многостадийные реакции.

Сложные, или многостадийные, реакции могут быть параллельными, последовательными, сопряженными, цепными, фотохимическими и т. д.

Параллельные - это реакции, в результате которых из одного или нескольких веществ в зависимости от условий образуются различные продукты, например, при термическом разложении хлората калия одновременно идут два превращения:

KCl + O2

 

KClO3

 

KClO4 + KCl

В организме параллельно с биологическим окислением глюко­зы может происходить ее молочнокислое или спиртовое брожение. В биосистемах таких случаев много. Организм должен найти опти­мальные доли каждого из направлений.

Последовательные (консекутивные) - это реакции, которые про­текают в несколько стадий. Продукты, образовавшиеся в первой стадии, являются исходными веществами для второй и т. д.:

k1 k2 k3

A → B → C → D

Примерами последовательных реакций в организме могут быть биологическое окисление глюкозы, гидролиз АТФ и др.

Скорость процесса определяется скоростью самой медленной стадии, которую называют лимитирующей.

Сопряженные - это частный случай параллельных реакций:

1) A + B → E;

2) A + C → F;

из которых первая протекает лишь совместно со второй, т. е. индуцируется второй реакцией. Первая реакция не происходит до тех пор, пока не введено в систему вещество С - индуктор. Явление химической индукции впервые исследовал в 1905 г. русский ученый А.Н. Шилов.

В биологических системах все эндергонические реакции протекают по механизму сопряженных реакций. Клеточное окисление углеводов или липидов в организме приводит к синтезу аденозинфосфорной кислоты, которая, в свою очередь, индуцирует другие пре­кращения, в частности биосинтез белков и нуклеиновых кислот.

Цепные - это реакции, происходящие с участием свободных радикалов (остатков молекул, имеющих неспаренные электроны и проявляющих вследствие этого очень высокую реакционную спо­собность).

Примером цепной реакции может быть синтез хлороводорода:

H2+Cl2 → 2HCl.

Под действием кванта энергии молекула Сl2 образует два ради­кала.

Реакция начинается при облучении смеси исходных веществ ультрафиолетовым светом:

hv

С12 Cl· + Cl· (зарождение цепи).

Далее происходит развитие цепи:

Cl· + Н2 → НСl+ Н;

Н· + Сl2 → НСl + Cl·.

Это пример неразветвленной цепной реакции.

В разветвленной цепной реакции взаимодействие свободного радикала с молекулой исходного вещества вызывает образование не одного, а двух или большего числа новых радикалов:

2 + О2 → 2Н2О;

Н2 + О2 → ОН· + ОН·;

ОН· + Н2 → Н2О + H·;

H· + О2 → ОН· + O·;

O· + Н2 → ОН· + H·.

Обрыв цепи может происходить при рекомбинации свободных радикалов, а также при взаимодействии их с посторонними веще­ствами.

Токсические вещества часто действуют по цепному механизму, обусловливая в организме необратимые изменения. Вещества, спо­собные обрывать разветвленное цепное окисление и таким образом предотвращать окислительные процессы, называются антиоксидантами.

Примером антиоксиданта, препятствующего в организме окис­лению ненасыщенных липидов и предохраняющего биологические мембраны от разрушения, является витамин Е. Его биологическая активность основана на способности образовывать устойчивые сво­бодные радикалы в результате отщепления атома водорода от гидроксильной группы. Эти радикалы вступают во взаимодействие с другими свободными радикалами, которые способствуют образова­нию органических пероксидов.

Цепные реакции играют важную роль в ряде патологических биопроцессов: канцерогенез, лучевая болезнь и др. К цепным процессам принадлежат ядерные реакции, взрывы, реакции полимеризации и др.

 


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.