Разложение вектора по базисным ортам. Направляющие косинусы. — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Разложение вектора по базисным ортам. Направляющие косинусы.

2018-01-30 234
Разложение вектора по базисным ортам. Направляющие косинусы. 0.00 из 5.00 0 оценок
Заказать работу

Рассмотрим в пространстве прямоугольную систему координат Oxyz. Выделим на координатных осях Ox, Oy и Oz единичные векторы (орты), обозначаемые , , соответственно (см. рис 12).


Рис. 12.
y
x
z
O
M 1
M 2
M 3
α
β
γ
N
M

 


Выберем произвольный вектор пространства и совместим его начало с началом координат: .

Найдем проекции вектора на координатные оси. Проведем через конец вектора плоскости, параллельные координатным плоскостям. Точки пересечения этих плоскостей с координатными осями обозначим соответственно через M 1, М 2 и М 3. Получим прямоугольный параллелепипед, одной из диагоналей которого является вектор . Тогда пр х , пр y , пр z . По определению суммы нескольких векторов находим

 

А так как , то

(5.1)

 

Но (5.2)

 

Обозначим проекции вектора на оси Ox, Oy и Oz соответственно через , и , т.е. , , . Тогда из равенств (5.1) и (5.2) получаем

 

 


Эта формула является основной в векторном исчислении и называется разложением вектора по ортам координатных осей. Числа , , называются координатами вектора , т.е. координаты вектора есть его проекции на соответствующие координатные оси.


 


Векторное равенство (5.3) часто записывают в символическом виде: .

Равенство означает, что

Зная проекции вектора , можно легко найти выражение для модуля вектора. На основании теоремы о длине диагонали прямоугольного параллелепипеда можно написать , т.е.

.

Отсюда

 


т.е. модуль вектора равен квадратному корню из суммы квадратов его проекций на оси координат.

Пусть углы вектора с осями Ox, Oy и Oz соответственно равны α, β, γ. По свойству проекции вектора на ось, имеем

(5.5)

Или, что то же самое,

Числа называются направляющими косинусами вектора .

Подставим выражения (5.5) в равенство (5.4), получаем

Сократив на получим соотношение

 

 


т.е. сумма направляющих косинусов ненулевого вектора равна единице.

Легко заметить, что координатами единичного вектора являются числа , т.е.

Итак, задав координаты вектора, всегда можно определить его модуль и направление, т.е. сам вектор.

 

21.Коллинеарные и компланарные вектора. Условия коллинеарности и компланарности.

 

 

Векторы и называются коллинеарными, если они лежат на одной прямой или на параллельных прямых; записывают || .

Коллинеарные векторы могут быть направлены одинаково или противоположно.

Нулевой вектор считается коллинеарным любому вектору.

Два вектора и называются равными ( = ), если они коллинеарны, одинаково направлены и имеют одинаковые длины.


Рис. 1.
Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, а начало вектора помещать в любую точку О пространства.

На рисунке 1 векторы образуют прямоугольник. Справедливо равенство = , но . Векторы и – противоположные, . Равные векторы также называют свободными.

 

Три вектора в пространстве называются компланарными,

если они лежат в одной плоскости или в параллельных

плоскостях.

Если среди трех векторов хотя бы один нулевой

или два любых коллинеарны, то такие векторы компланарны.

 


 


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.