Язык науки и его особенности — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Язык науки и его особенности

2018-01-29 878
Язык науки и его особенности 0.00 из 5.00 0 оценок
Заказать работу

Сфера научного общения отличается тем, что в ней пре­следуются цели наиболее точного, логичного, однознач­ного выражения мысли. Ведущее положение в научном стиле занимает моно­логическая речь. Речевыми жанрами, воплощающими этот стиль языка, являются научные монографии, научные ста­тьи, диссертационные работы, различные жанры учебной, научно-технической, научно-популярной литературы; научные доклады, лекции.

В большинстве случаев научный стиль реализуется в письменной форме речи. Однако с развитием средств мас­совой коммуникации, с ростом значимости науки в совре­менном обществе, увеличением числа различного рода научных контактов, таких, как конференции, симпозиумы, семинары, возрастает роль устной научной речи.

Основными чертами научного стиля являются точность, абстрактность, логичность и объективность изложения.

Требование точности научной речи предопределяет такую особенность словаря научного стиля, как терминологичность. В научной речи активно используется специальная и терминологическая лексика. В последнее время возросла роль международной терминологии (особенно это заметно в экономической сфере, например, менеджмент, спонсор, секвестр, риэлтер и проч.).

Стремление к обобщению, абстракции проявляется в научном стиле в преобладании абстрактной лекси­ки над конкретной. Весьма частотными являются суще­ствительные с абстрактными значениями типа: мышле­ние, перспективы, истина, гипотеза, точка зрения, обусловленность и под.

Лексический состав научного стиля характеризуемся относительной однородностью и замкнутостью, что вы­ражается, в частности, в меньшем использовании сино­нимов. Объем текста в научном стиле увеличивается не столько за счет употребления различных слов, сколько за счет многократного повторения одних и тех же.

В научном функциональном стиле отсутствует разго­ворная и просторечная лексика. Этому стилю в мень­шей степени свойственна оценочность. Оценки исполь­зуются, чтобы выразить точку зрения автора, сделать ее более понятной, доступной, пояснить мысль, и в основном имеют рациональный, а не эмоционально-экспрессивный характер. Научному стилю речи чужда эмоционально-экспрессивная окрашенность, поскольку она не способствует достижению точности, логичности, объективности и абстрактности изложения.

Отличительной особенностью письменной научной речи является то, что тексты могут содержать не только языковую информацию, но и различные формулы, символы, таб­лицы, графики и т. п. В большей степени это характерно для текстов естественных и прикладных наук: математи­ки, физики, химии и др. Однако практически любой науч­ный текст может содержать графическую информацию; это одна из характерных черт научного стиля речи.

Обобщая отличительные особенности научного стиля, прежде всего его лексического состава, можно сказать, что он характеризуется:

1. Употреблением книжной, ней­тральной и терминологической лексики.

2. Преобладани­ем абстрактной лексики над конкретной.

3. Употреблением многозначных слов в одном (реже двух) значениях.

4. Уве­личением доли интернационализмов в терминологии.

5. Относительной однородностью, замкнутостью лексичес­кого состава.

6. Неупотребительностью разговорных и просторечных слов; слов с эмоционально-экспрессивной и оценочной окраской.

7. Наличием синтаксических кон­струкций, подчеркивающих логическую связь и последо­вательность мыслей.

Общелогические методы

С помощью общелогических методов познание постепенно, шаг за шагом, раскрывает внутренние существенные признаки предмета, связи его элементов и их взаимодействие друг с другом. Для того чтобы осуществить эти шаги, необходимо целостный предмет расчленить (мысленно или практически) на составляющие части, а затем изучить их, выделяя свойства и признаки, прослеживая связи и отношения, а также выявляя их роль в системе целого. После того как эта познавательная задача решена, части вновь можно объединить в единый предмет и составить себе конкретно-общее представление, то есть такое представление, которое опирается на глубокое знание внутренней природы предмета. Эта цель достигается с помощью таких операций, как анализ и синтез.

Анализ — это расчленение целостного предмета на составляющие части (стороны, признаки, свойства или отношения) с целью их всестороннего изучения.

Синтез — это соединение ранее выделенных частей (сторон, признаков, свойств или отношений) предмета в единое целое.

Объективной предпосылкой этих познавательных операций является структурность материальных объектов, способность их элементов к перегруппировке, объединению и разъединению.

Анализ и синтез являются наиболее элементарными и простыми приемами познания, которые лежат в самом фундаменте человеческого мышления. Вместе с тем они являются и наиболее универсальными приемами, характерными для всех его уровней и форм.

Еще один общелогический прием познания — абстрагирование. Абстрагирование — это особый прием мышления, который заключается в отвлечении от ряда свойств и отношений изучаемого явления с одновременным выделением интересующих нас свойств и отношений. Результатом абстрагирующей деятельности мышления является образование различного рода абстракций, которыми являются как отдельно взятые понятия и категории, так и их системы.

Предметы объективной действительности обладают бесконечными множествами различных свойств, связей и отношений. Одни из этих свойств сходны между собой и обусловливают друг друга, другие же отличны и относительно самостоятельны. Например, свойство пяти пальцев человеческой руки взаимно однозначно соответствовать пяти деревьям, пяти камням, пяти овцам оказывается независимым от размера предметов, их окраски, принадлежности к живым или неорганическим телам и т. д. В процессе познания и практики устанавливают прежде всего эту относительную самостоятельность отдельных свойств и выделяют те из них, связь между которыми важна для понимания предмета и раскрытия его сущности.

Процесс такого выделения предполагает, что эти свойства и отношения должны быть обозначены особыми замещающими знаками, благодаря которым они закрепляются в сознании в качестве абстракций. Например, указанное свойство пяти пальцев взаимно однозначно соответствовать пяти другим предметам и закрепляется особым знаковым выражением — словом «пять» или цифрой, которые и будут выражать абстракцию соответствующего числа.

Когда мы абстрагируем некоторое свойство или отношение ряда объектов, то тем самым создается основа для их объединения в единый класс. По отношению к индивидуальным признакам каждого из объектов, входящих в данный класс, объединяющий их признак выступает как общий. Обобщение — это такой прием мышления, в результате которого устанавливаются общие свойства и признаки объектов.

Операция обобщения осуществляется как переход от частного или менее общего понятия и суждения к более общему понятию или суждению. Например, такие понятия, как «клен», «липа», «береза» и т. д., являются первичными обобщениями, от которых можно перейти к более общему понятию «лиственное дерево». Расширяя класс предметов и выделяя общие свойства этого класса, можно постоянно добиваться построения все более широких понятий, в частности, в данном случае можно прийти к таким понятиям, как «дерево», «растение», «живой организм».

В процессе исследования часто приходится, опираясь на уже имеющиеся знания, делать заключения о неизвестном. Переходя от известного к неизвестному, мы можем либо использовать знания об отдельных фактах, восходя при этом к открытию общих принципов, либо, наоборот, опираясь на общие принципы, делать заключения о частных явлениях. Подобный переход осуществляется с помощью таких логических операций, как индукция и дедукция.

Индукцией называется такой метод исследования и способ рассуждения, в котором общий вывод строится на основе частных посылок. Дедукция — это способ рассуждения, посредством которого из общих посылок с необходимостью следует заключение частного характера.

Основой индукции являются опыт, эксперимент и наблюдение, в ходе которых собираются отдельные факты. Затем, изучая эти факты, анализируя их, мы устанавливаем общие и повторяющиеся черты ряда явлений, входящих в определенный класс. На этой основе строится индуктивное умозаключение, в качестве посылок которого выступают суждения о единичных объектах и явлениях с указанием их повторяющегося признака, и суждение о классе, включающем данные объекты и явления. В качестве вывода получают суждение, в котором признак приписывается всему классу. Так, например, изучая свойства воды, спиртов, жидких масел, устанавливают, что все они обладают свойством упругости. Зная, что вода, спирты, жидкие масла принадлежат к классу жидкостей, делают вывод, что жидкости упруги.

Дедукция отличается от индукции прямо противоположным ходом движения мысли. В дедукции, как это видно из определения, опираясь на общее знание, делают вывод частного характера. Одной из посылок дедукции обязательно является общее суждение. Если оно получено в результате индуктивного рассуждения, тогда дедукция дополняет индукцию, расширяя объем нашего знания. Например, если мы знаем, что все металлы электропроводны, и если установлено, что медь относится к группе металлов, то из этих двух посылок с необходимостью следует заключение о том, что медь электропроводна.

Но особенно большое познавательное значение дедукции проявляется в том случае, когда в качестве общей посылки выступает не просто индуктивное обобщение, а какое-то гипотетическое предположение, например новая научная идея. В этом случае дедукция является отправной точкой зарождения новой теоретической системы. Созданное таким путем теоретическое знание предопределяет дальнейший ход эмпирических исследований и направляет построение новых индуктивных обобщений.

Изучая свойства и признаки явлений окружающей нас действительности, мы не можем познать их сразу, целиком, во всем объеме, а подходим к их изучению постепенно, раскрывая шаг за шагом все новые и новые свойства. Изучив некоторые из свойств предмета, мы можем обнаружить, что они совпадают со свойствами другого, уже хорошо изученного предмета. Установив такое сходство и найдя, что число совпадающих признаков достаточно большое, можно сделать предположение о том, что и другие свойства этих предметов совпадают. Ход рассуждения подобного рода составляет основы аналогии.

Аналогия — это такой прием познания, при котором на основе сходства объектов в одних признаках заключают об их сходстве и в других признаках. Так, при изучении природы света были установлены такие явления, как дифракция и интерференция. Эти же свойства ранее были обнаружены у звука и вытекали из его волновой природы. На основе этого сходства X. Гюйгенс заключил, что и свет имеет волновую природу. Подобным же образом Л. де Бройль, предположив определенное сходство между частицами вещества и полем, пришел к заключению о волновой природе частиц вещества.

Умозаключения по аналогии, понимаемые предельно широко, как перенос информации об одних объектах на другие, составляют гносеологическую основу моделирования.

Моделирование — это изучение объекта (оригинала) путем создания и исследования его копии (модели), замещающей оригинал с определенных сторон, интересующих познание.

Модель всегда соответствует объекту — оригиналу — в тех свойствах, которые подлежат изучению, но в то же время отличается от него по ряду других признаков, что делает модель удобной для исследования интересующего нас объекта.

Использование моделирования диктуется необходимостью раскрыть такие стороны объектов, которые либо невозможно постигнуть путем непосредственного изучения, либо невыгодно изучать их таким образом из чисто экономических соображений. Человек, например, не может непосредственно наблюдать процесс естественного образования алмазов, зарождения и развития жизни на Земле, целый ряд явлений микро- и мегамира. Поэтому приходится прибегать к искусственному воспроизведению подобных явлений в форме, удобной для наблюдения и изучения. В ряде же случаев бывает гораздо выгоднее и экономичнее вместо непосредственного экспериментирования с объектом построить и изучить его модель.

Модели, применяемые в обыденном и научном познании, можно разделить на два больших класса: материальные и идеальные. Первые являются природными объектами, подчиняющимися в своем функционировании естественным законам. Вторые представляют собой идеальные образования, зафиксированные в соответствующей знаковой форме и функционирующие по законам логики, отражающей мир.

На современном этапе научно-технического прогресса большое распространение в науке и в различных областях практики получило компьютерное моделирование. Компьютер, работающий по специальной программе, способен моделировать самые различные реальные процессы (например, колебания рыночных цен, рост народонаселения, взлет и выход на орбиту искусственного спутника Земли, химическую реакцию и т. д.). Исследование каждого такого процесса осуществляется посредством соответствующей компьютерной модели.

Место проблемы

Начальная ступень научного познавательного цикла - постановка проблемы, которую можно определить как знание о незнании, знание со знаком вопроса.

В постановке проблемы необходимо, во-первых, осознание некоторой ситуации как задачи; во-вторых, четкое понимание смысла проблемы, ее формулирование с разграничением известного и неизвестного. \

 

 

Роль гипотезы

Гипотеза — форма теоретического знания, содержащая предположение, сформулированное на основе ряда фактов, истинное значение которого неопределенно и нуждается в доказательстве. Гипотетическое знание носит вероятный, а не достоверный характер и требует проверки, обоснования.

В ходе доказательства гипотез:

а) одни из них становятся истинной теорией,

б) другие видоизменяются, уточняются и конкретизируются,

в) третьи отбрасываются, если проверка дает отрицательный результат.

Выдвижение новой гипотезы, как правило, опирается на результаты проверки старой, даже в том случае, если эти результаты были отрицательными.

По Менделееву, гипотеза является необходимым элементом естественнонаучного познания, включает в себя:

а) собирание, описание, систематизацию и изучение фактов;

б) составление гипотезы или предположения о причинной связи явлений;

в) опытную проверку логических следствий из гипотез;

г) превращение гипотез в достоверные теории или отбрасывание ранее принятой гипотезы и выдвижение новой.

Гипотеза может существовать лишь до тех пор, пока не противоречит достоверным фактам опыта, в противном случае она становится просто фикцией. Она проверяется соответствующими опытными фактами (экспериментом), получая характер истины. Гипотеза является плодотворной, если может привести к новым знаниям и новым методам познания.

Говоря об отношении гипотез к опыту, можно выделить три их типа:

а) гипотезы, возникающие непосредственно для объяснения опыта;

б) гипотезы, в формировании которых опыт играет определенную, но не исключительную роль;

в) гипотезы, которые возникают на основе обобщения только предшествующих концептуальных построений.

В современной методологии термин «гипотеза» употребляется в двух основных значениях:

а) форма теоретического знания, характеризующаяся проблематичностью и недостоверностью;

б) метод развития научного знания.

Как форма теоретического знания гипотеза должна отвечать некоторым общим условиям, которые необходимы для ее возникновения и обоснования и которые нужно соблюдать при построении любой научной гипотезы вне зависимости от отрасли научного знания. Такими непременными условиями являются следующие:

1.Выделяемая гипотеза должна соответствовать установленным в науке законам.

2.Гипотеза должна быть согласована с фактическим материалом, на базе которого и для объяснения которого она выдвинута. Иначе говоря, она должна объяснить все имеющиеся достоверные факты.

3.Гипотеза не должна содержать в себе противоречий, которые запрещаются законами формальной логики. Но противоречия, являющиеся отражением объективных противоречий, не только допустимы, но и необходимы в гипотезе.

4. Гипотеза должна быть простой, не содержать ничего лишнего, чисто субъективистского, никаких произвольных допущений, не вытекающих из необходимости познания объекта таким, каков он в действительности.

5.Гипотеза должна быть приложимой к более широкому классу исследуемых родственных объектов, а не только к тем, для объяснения которых она специально была выдвинута.

6.Гипотеза должна допускать возможность ее подтверждения или опровержения: либо прямо — непосредственное наблюдение тех явлений, существование которых предполагается данной гипотезой; либо косвенно — путем выведения следствий из гипотезы и их последующей опытной проверки.

Развитие научной гипотезы может происходить в трех основных направлениях.

1. Уточнение, конкретизация гипотезы в ее собственных рамках.

2. Самоотрицание гипотезы, выдвижение и обоснование новой гипотезы. В этом случае происходит не усовершенствование старой системы знаний, а ее качественное изменение.

3. Превращение гипотезы как системы вероятного знания — подтвержденной опытом — в достоверную систему знания, т. е. в научную теорию.

Гипотеза как метод развития научно-теоретического знания в своем применении проходит основные этапы:

1.Попытка объяснить изучаемое явление на основе известных фактов и уже имеющихся в науке законов и теорий. Если такая попытка не удается, то делается дальнейший шаг.

2.Выдвигается догадка, предположение о причинах и закономерностях данного явления, его свойств, связей и отношений, о его возникновении и развитии и т. п. На этом этапе познания выдвинутое положение представляет собой вероятное знание, еще не доказанное логически и не настолько подтвержденное опытом, чтобы считаться достоверным. Чаще всего выдвигается несколько предположений для объяснения одного и того же явления.

3.Оценка основательности, эффективности выдвинутых предположений и отбор и их множества наиболее вероятного на основе указанных выше условий обоснованности гипотезы.

4.Развертывание выдвинутого предположения в целостную систему знания и дедуктивное выведение из него следствий с целью их последующей эмпирической проверки.

5.Опытная, экспериментальная проверка выдвинутых из гипотезы следствий. В результате этой проверки гипотеза либо «переходит в ранг» научной теории, или опровергается, «сходит с научной сцены». Но эмпирическое подтверждение следствий из гипотезы не гарантирует в полной мере ее истинности, а опровержение одного из следствий не свидетельствует однозначно о её ложности в целом.

Решающей проверкой истинности гипотезы является в конечном счете практика во всех своих формах, но определенную роль в доказательстве или опровержении гипотетического знания играет и логический критерий истины. Проверенная и доказанная гипотеза переходит в разряд достоверных истин, становится научной теорией.

Говоря о гипотезах, нужно иметь в виду, что существуют различные их виды. Характер гипотез определяется во многом тем, по отношению к какому объекту они выдвигаются. Так, выделяют гипотезы общие, частные и рабочие.

Общие гипотезы — фундамент построения основ научного знания.

Частные — тоже обоснованные предположения о происхождении и свойства единичных фактов, конкретных событий и отдельных явлений.

Рабочие — предположение, выдвигаемое, как правило, на первых этапах исследования и служащее его направляющим ориентиром, отправным пунктом дальнейшего движения исследовательской мысли.

 

Эмпирический метод

Эмпирическое зна­ние — это совокупность высказываний о реальных, эмпирических объектах.Эмпирическое знание основывается на чувствен­ном познании. Рациональный момент и его формы (суждения, поня­тия и др.) здесь присутствуют, но имеют подчиненное значение. По­этому исследуемый объект отражается преимущественно со стороны своих внешних связей и проявлений, доступных созерцанию и выражающих внутренние отношения. Эмпирическое, опытное исследование направлено без промежуточных звеньев на свой объект. Оно осваивает его с помощью таких приемов и средств, как описание, сравнение, измере­ние, наблюдение, эксперимент, анализ, индукция (от частного к общему), а его важнейшим элементом является факт (от лат. factum — сделанное, свершившееся). 1. Наблюдение — это преднамеренное и направленное восприятие объекта познания с целью получить информацию о его форме, свойствах и отношениях. Процесс наблюдения не является пассивным созерцанием. Это активная, направленная форма гносеологического отношения субъекта по отношению к объекту, усиленная дополнительными средствами наблюдения, фиксации информации и ее трансляции. К наблюдению предъявляются требования: цель наблюдения; выбор методики; план наблюдения; контроль за корректностью и надежностью полученных результатов; обработка, осмысление и интерпретация полученной информации. 2. Измерение - это прием в познании, с помощью которого осуществляется количественное сравнение величин одного и того же качества. Качественные характеристики объекта, как правило, фиксируются приборами, количественная специфика объекта устанавливается с помощью измерений.

3. Эксперимент - (от лат. experimentum - проба, опыт), метод познания, при помощи которого в контролируемых и управляемых условиях исследуются явления действительности. Отличаясь от наблюдения активным оперированием изучаемым объектом, Э. осуществляется на основе теории, определяющей постановку задач и интерпретацию его результатов.

4 Сравнение представляет собой метод сопоставления объектов с целью выявления сходства или различия между ними. Если объекты сравниваются с объектом, выступающим в качестве эталона, то такое называется сравнение измерением

Методы эмпирического исследования

- наблюдение

¨ сравнение

¨ измерение

¨ эксперимент

Наблюдение

Наблюдение — это целенаправленное восприятие объекта, обусловленное задачей деятельности. Основное условие научного наблюдения — объективность, т.е. возможность контроля путем либо повторного наблюдения, либо применения других методов исследования Сравнение

Это один из наиболее распространенных и универсальных методов исследования. Известный афоризм "все познается в сравнении" — лучшее тому доказательство.

Для того чтобы сравнение было плодотворным, оно должно удовлетворять двум основным требованиям.

1. Сравниваться должны лишь такие явления, между которыми может существовать определенная объективная общность. Нельзя сравнивать заведомо несравнимые вещи, — это ничего не дает. В лучшем случае здесь можно только к поверхностным и потому бесплодным аналогиям.

2. Сравнение должно осуществляться по наиболее важным признакам Сравнение по несущественным признакам может легко привести к заблу^ дению.

Измерение

Измерение исторически развивалось из операции сравнения, являющейся э основой. Однако в отличие от сравнения, измерение является более точным и универсальным познавательным средством.

Измерение— совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах измерения. Различают прямые измерения (например, измерение длины проградуированной линейкой) и косвенные измерения, основанные на известной зависимости между искомой величиной и непоссредственно измеряемыми величинами [5.5].

Измерение предполагает наличие следующих основных элементов:

объекта измерения;

единицы измерения, т.е. эталонного объекта;

измерительного прибора (приборов);

метода измерения;

наблюдателя (исследователя).

При прямом измерении результат получается непосредственно из самого процесса измерения (например, в спортивных соревнованиях измерение длины прыжка при помощи рулетки, измерение длины ковровых покрытий в магазине и т.п.).

При косвенном измерении искомая величина определяется математическим путем на основе знания других величин, полученных прямым измерением. Например, зная размер и вес строительного кирпича, можно измерить удельное давление (при соответствующих расчетах), которое должен выдержать кирпич при строительстве многоэтажных домов.

Эксперимент

Эксперимент — исследование каких-либо явлений путем активного воздействия на них при помощи создания новых условий, соответствующих целям исследования, или же через изменение течения процесса в нужном направлении Это наиболее сложный и эффективный метод эмпирического исследования Он предполагает использование наиболее простых эмпирических методов — наблюдения, сравнения и измерения.

Преимущества эксперимента по сравнению с наблюдением

1. В ходе эксперимента становится возможным изучение того или иного явления в "чистом" виде. Это означает, что всякого рода "юбочные" факторы, затемняющие основной процесс, могут быть устранены, и исследователь получает точное знание именно об интересующем нас явлении.

2. Эксперимент позволяет исследовать свойства объектов действитедьности в экстремальных условиях:

при сверхнизких и сверхвысоких температурах;

при высочайших давлениях:

при огромных напряженностях электрических и магнитных полей и т п

Работа в этих условиях может привести к обнаружению самых неожиданных и удивительных свойств у обыкновенных вещей и тем самым позволяет значительно глубже проникнуть в их сущность. Примером такого рода "странных" явлений, открытых в экстремальных условиях, касающихся области управления, может служить сверхпроводимость.

3. Важнейшее достоинство эксперимента — его повторяемость. В процессе эксперимента необходимые наблюдения, сравнения и измерения могут быть проведены, как правило, столько раз, сколько нужно для получения достоверных данных. Эта особенность экспериментального метода делает его весьма ценным при исследовании.

Наиболее подробно все достоинства эксперимента будут рассмотрены ниже, при изложении некоторых специфических видов эксперимента.

Ситуации, требующие экспериментального исследования

1. Ситуация, когда необходимо обнаружить у объекта неизвестные ранее свойства. Результатом такого эксперимента являются утверждения, не вытекающие из имевшегося знания об объекте.

Классический пример — опыт Э. Резерфорда по рассеянию Х-частиц, в результате которого была установлена планетарная структура атома. Подобные эксперименты называются исследовательскими.

2. Ситуация, когда необходимо проверить правильность тех или иных утверждений или теоретических построений.

 

Теоретический уровень

В отличие от эмпирического, теоретическое исследование, стремясь к раскрытию глубинной сущности изучаемых процессов и явлений, преследует цель не описать, а объяснить выявленные научные факты и эмпирические закономерности. Этому способствует обращение к разнообразным познавательным процедурам, исходное место среди которых принадлежит методу идеализации.

Идеализация – это метод, позволяющий сконструировать особые абстрактные (идеализированные) объекты, которыми оперирует теоретическое познание, создавая модельные представления об изучаемой предметной области (частные или фундаментальные теоретические схемы). Формирование идеализаций может идти разными путями:

- последовательно осуществляемое многоступенчатое абстрагирование. Так, могут быть получены абстрактные объекты математики – плоскость, прямая, геометрическая точка;

- выявление и фиксация некоего свойства изученного объекта в отрыве от других свойств. Например, если зафиксировать только свойства физических предметов: поглощать падающее на них излучение, то возникает идеализированный объект «абсолютно черное тело»;

- рассмотрение отдельных свойств и характеристик в режиме предельного перехода, в результате чего получаются, например, такие идеальные объекты как «абсолютно твердое тело», «несжимаемая жидкость» и пр.

Формализация – отображение знания в знаково-символическом виде (формализованном языке). При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами), что связано с построением искусственных языков (язык математики, логики, химии и т.п.). Формализация служит основой для процессов алгоритмизации и программирования вычислительных устройств, а тем самым и компьютеризации не только научно-технического, но и других форм знания. Главное в процессе формализации состоит в том, что над формулами искусственных языков можно производить операции, получать из них новые формулы и соотношения. Тем самым операции с мыслями о предметах заменяются действиями со знаками и символами. Но, как показал австрийский математик и логик XX в. К. Гедель, в теории всегда остается невыявленный, неформализуемый остаток. Теорема Геделя о принципиальной невозможности полной формализации научных рассуждений и научного знания в целом.

Аксиоматический метод – способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения – аксиомы (постулаты); все остальные утверждения этой теории выводятся из них чисто логическим путем, посредством доказательства. Для вывода теории из аксиом (и вообще одних формул из других) формируются специальные правила вывода. Гипотетико-дедуктивный метод – способ построения научной теории, сущность которого заключается в создании системы дедуктивно-связанных между собой гипотез, из которых, в конечном счете, выводятся утверждения об эмпирических фактах. Тем самым этот метод основан на выведении (дедукции) заключений из гипотез и других посылок, истинное значение которых неизвестно. Общая структура гипотетико-дедуктивного метода (шаги его реализации):

- ознакомление с фактическим материалом, требующим теоретического объяснения и попытка такового с помощью уже существующих теорий и законов. Если нет, то:

- выдвижение догадки (гипотезы, предположения) о причинах и закономерностях данных явлений с помощью различных логических приемов;

- оценка основательности и серьезности предположений и отбор из их множества наиболее вероятной;

- выведение из гипотезы (обычно дедуктивным путем) следствий с уточнением ее содержания;

- экспериментальная проверка выведенных из гипотезы следствий. Тут гипотеза или получает экспериментальные подтверждения или опровергается. Лучшая по результатам проверки гипотеза переходит в теорию.

Разновидностью гипотетико-дедуктивного метода можно считать математическую гипотезу, где в качестве гипотезы выступают некоторые уравнения.

Особое место в современном теоретическом исследовании принадлежит методу вычислительного эксперимента, широкое использование которого началась в последние десятилетия XX века благодаря развитию информационно-компьютерной базы научного поиска. Вычислительный эксперимент – это эксперимент над математической моделью объекта на ЭВМ. Вычислительный эксперимент базируется на триаде: «математическая модель – алгоритм – программа»; носит междисциплинарный характер, объединяя в одном цикле деятельность теоретиков, специалистов в области прикладной математики и программистов. Работа со сложными исследовательскими задачами предполагает использование не только различных методов, но и различных стратегий научного поиска. К числу важнейших из них, играющих роль общенаучных программ современного научного познания относятся исторический и системный подходы.

Исторический подход предполагает изучение возникновения, формирования и развития объектов.

Группа исторических методов включает:

1) конкретно-исторический (собственно исторический);

2) абстрактно-исторический (реконструкционный) методы исследования.

Конкретно-исторический метод направлен на изучение и теоретическое воспроизведение истории того или иного объекта во всем его многообразии, полноте взаимосвязей, богатстве конкретных проявлений и оттенков. Другой вариант исторического подхода – реконструкционный – предполагает выявление некой исторической закономерности в чистом виде, не обращаясь в полной мере непосредственно к самой эмпирической истории, а реконструируя эту закономерность на основе каких-либо теоретических предпосылок (например, общественно-историческая формация; культурно-исторический тип, «Третья волна» и т.д.). Разнообразие исторически ориентированных принципов, концепций в различных науках (как естественных, так и гуманитарных) демонстрирует междисциплинарное значение исторического подхода.

Системный подход –совокупность общенаучных методологических принципов (требований), в основе которых лежит рассмотрение объектов как систем. К числу этих требований относятся:

- выявление зависимости каждого элемента от его места и функций в системе с учетом того, что свойства целого несводимы к сумме свойств его элементов;

- анализ того, насколько поведение систем обусловлено как особенностями ее отдельных элементов, так и свойствами ее структуры;

- исследование механизма взаимодействия системы и среды;

- изучение характера иерархичности, присущей данной системе;

- обеспечение всестороннего многоаспектного описания системы;

- рассмотрение системы как динамической, развивающейся целостности.

Специфика системного подхода – ориентация исследования на раскрытие целостности развивающегося объекта и обеспечивающих ее механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретическую картину.

Структурно-функциональный (структурный) метод строится на основе выделения в целостных системах их структуры – совокупности устойчивых отношений и взаимосвязей между ее элементами и их роли (функции) относительно друг друга. Структура понимается как нечто инвариантное (неизменное) при определенных преобразованиях, а функция как «назначение» каждого из элементов данной системы (функции какого-либо биологического органа, функции государства, функции теории и т.п.). Основные требования процедуры структурно-функционального метода (который часто рассматривается как разновидность системного подхода):

- изучение строения, структуры системного объекта;

- исследование его элементов и их функциональных характеристик;

- анализ изменения этих элементов и их функций;

- рассмотрение развития (истории) системного объекта в целом;

- представление объекта как гармонически функционирующей системы, все элементы которой «работают» на поддержание этой гармонии.

В рамках системного подхода можно выделить вероятностно-статистические методы, основанные на учете действия множества случайных факторов, характеризующихся устойчивой частотой.

 

Основания науки

Вспомним, что в структуре научного познания выделяются три основных уровня: 1. эмпирическое познание; 2. теоретическое познание; 3. метатеория (основания науки).

Метатеория (основания науки) является признаком состоявшейся науки, находящейся на довольно высоком этапе развития.

Основания науки имеют многослойное строение. Можно выделить три структурных элемента в основаниях науки:

1. Идеалы и нормы научного познания

2. Философские основания науки

3. Научная картина мира

Идеалы науки – это ценностн


Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.121 с.