Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Определение микробиологии как науки. Объекты изучения, разделы микробиологии. Задачи медицинской микробиологии

2018-01-04 4369
Определение микробиологии как науки. Объекты изучения, разделы микробиологии. Задачи медицинской микробиологии 5.00 из 5.00 4 оценки
Заказать работу

Вверх
Содержание
Поиск

Определение микробиологии как науки. Объекты изучения, разделы микробиологии. Задачи медицинской микробиологии

Ответ:

Микробиология - наука, изучающая строение, жизнедеятельность и экологию микроорганизмов – организмов, видимых только в микроскоп.

Объектами изучения микробиологии являются: бактерии, грибы, водоросли, простейшие и вирусы. В область интересов микробиологии входит их систематика, морфология, физиология, биохимия, эволюция, роль в экосистемах, а также возможности практического использования микроорганизмов и их свойств.

Микробиология подразделяется на дисциплины:

1. Бактериологию – науку о бактериях;

2. Вирусологию – о вирусах;

3. Микологию – о грибах;

4. Протозоологию – о простейших;

5. Иммунологию – о защитных реакциях организма.

Разделы микробиологии:

1. Общая – изучает наиболее общие закономерности, свойственные каждой группе микроорганизмов. Она является базовой для всех разделов микробиологии.

2. Частная –изучает отдельных представителей микромира, в зависимости от проявления и влияния их на окружающую среду, живую природу, в том числе человека.

К частным разделам микробиологии относятся: медицинская, ветеринарная, сельскохозяйственная, техническая (раздел биотехнологии), морская, космическая.

Задачи медицинской микробиологии.

1. Установление этиологической (причинной) роли микроорганизмов в норме и патологии.

2. Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определения) возбудителей.

3. Бактериологический и вирусологический контроль окружающей среды

 

Начальный период развития микробиологии. Развитие микробиологии во второй половине 19 века и в 20 веке.

Ответ:

Эвристический период (до изобретения микроскопа).О природе заразных болезней высказывались различные предположения, что их возбудителями являются какие-то мельчайшие живые существа ― контагии. Врач Джироламо Фракасторо сформулировал положение, что зараза — это материальное начало.

Описательный (микрографический) период занял около двухсот лет.

Антони ван Левенгук изобрёл микроскоп, в 1675 г. впервые описал простейших, в 1683г. ― основные формы бактерий.

Физиологический период (с 1875 г.) ― эпоха Луи Пастера и Роберта Коха.

Открытия Л. Пастера:

· Промышленная микробиология (брожение).

· Разработка принципов асептики и методов стерилизации.

· Открытие возбудителей инфекционных заболеваний: сибирской язвы, родильной горячки, нагноений.

· Профилактика инфекционных заболеваний ― разработка вакцин против куриной холеры, сибирской язвы, бешенства.

Открытия Р. Коха:

· Методология изучения микроорганизмов ― триада Генле-Коха.

· Открытие возбудителей холеры, туберкулеза.

Иммунологический период.И.И.Мечников создал учение о невосприимчивости (иммунитете), разработал теорию фагоцитоза и обосновал клеточную теорию иммунитета..

Вирусологический период. 1892 г. Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус.

Современный (молекулярно-биологический) период (со 2-й половины XX в.).

· открытие новых форм жизни (инфекционных белков ― прионов и инфекционных РНК ― вироидов),

разработка методов культивирования клеток;

· разработка принципиально новых способов диагностики инфекционных и неинфекционных заболеваний (ИФА, РИА, иммуноблотинг, гибридизация НК, ПЦР);

· открытие новых возбудителей вирусных и бактериальных инфекций (ВИЧ, возбудители геморрагических лихорадок, легионелл и др.)

 

Техника безопасности в лаборатории. Мероприятия по окончании работы. Мероприятия при аварийной ситуации, журнал регистрации аварийных ситуаций.

Ответ:

1. В помещение лаборатории нельзя входить без специальной одежды – халата, шапочки, сменной обуви. Смена рабочей одежды должна проводиться по мере загрязне­ния, но не реже 1 раза в неделю. Перед сдачей в стирку защитная оде­жда должна быть обеззаражена.

2. Запрещается в помещении прием и хранение пищи, курение.

3. Нельзя использовать лабораторную спец. одежду за пределами лаборатории.

4. Зараженный материал подлежит уничтожению, инструменты и поверхность рабочего стола, дезинфицируют после окончания работ.

5. После работы с культурой, животными, перед уходом из лаборатории необходимо вымыть руки.

6. Штаммы микроорганизмов, заразный материал должны хранится в сейфе или холодильнике закрытыми и опечатанными.

7. Необходимо проводить обеззараживания предметов, одежды, стола, комнаты, в случае если разбился сосуд с инфицированным материалом или произошел неосторожный разлив заразного материала.

8. Сотрудники лаборатории подлежат обязательной вакцинации против тех инфекционных заболеваний, с возбудителями которых возможна работа в лаборатории.

9. В лаборатории должна быть инструкция по технике безопасности, которую персонал должен знать и строго выполнять. Необходимо обязательно немедленно сообщить руководителю лаборатории обо всех аварийных ситуациях, создающих угрозу биологической безопасности и проводить все мероприятия для предотвращения последствий.

Мероприятия по окончании работы.

По окончании работы все объекты, содержащие ПБА, должны быть убраны в холодильники, термостаты; в обязательном порядке проводится дезинфекция рабочих поверхно­стей столов.

Остатки ПБА, использованная посуда, твердые отходы из "заразной" зоны лаборатории должны собираться в закрывающиеся емкости и передаваться в автоклавную или дезинфицироваться на месте.

Перенос ПБА и использованной посуды для обеззаражи­вания должен осуществляться в закрывающихся емкостях с соответст­вующей маркировкой.

После завершения работы помещение "заразной" зоны лаборатории запирается и опечатывается.

 

Мероприятия при аварийной ситуации, журнал регистрации аварийных ситуаций.

На случай аварии, при которой создается реальная или потенци­альная возможность выделения патогенного биологического агента должен быть план ликвидации аварии, запас дезинфицирующих средств, активных в отношении возбудителей, с которыми проводят исследования.

В подразделении, проводящем работу с ПБА, в специально отве­денном месте хранят гидропульт (автомакс), комплекты рабочей (для переодевания пострадавших) и защитной (для сотрудников, ликвиди­рующих последствия аварии) одежды, аварийную аптечку.

Во всех подразделениях, работающих с ПБА, не реже одного раза в год проводят плановые тренировочные занятия по ликвидации аварий.

 

При проливе или разбрызгивании биоматериалов о происшествии необходимо поставить в известность зав. КДЛ, который определяет вид и объем дезинфекционных мероприятий. Все случаи аварий в КДЛ любого профиля подлежат обязательной регистрации во внутрилабораторном журнале по технике безопасности. Дальнейшие действия сотрудников зависят от типа ЧС.

Каждая аварийная ситуация должна быть в тот же день зарегистрирована в соответствующем журнале. Туда вносят сведения о пострадавших, обстоятельствах происшествия, принятых мерах устранения последствий аварии и профилактике.

 

7. Нормативные документы, регламентирующие работу микробиологической лабо­ратории. Правила работы с биологическим мик­роскопом

Основные документы:

• СанПиН 2.1.3.2630-10 «Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность»;

• СанПиН 2.1.7.2790-10 «Санитарно-эпидемиологические требования к обращению с медицинскими отходами»;

• СанПиН Безопасность работы с микроорганизмами III-IV групп патогенности (опасности) и возбудителями паразитарных болезней.

Кроме того, руководствуются различными приказами, стандартами, распоряжениями, МУК.

 

Правила работы с биологическим мик­роскопом

Микроскоп – точный оптический прибор, требующий бережного обращения. При работе с ним нельзя применять большие усилия.

Нельзя касаться пальцами поверхности линз, зеркал, светофильтров.

С поверхности линз удаляют пыль мягко беличьей кисточкой, промытой в эфире.

С зеркал сдувают пыль резиновой грушей. Протирать их нельзя.

Снаружи микроскоп протирают мягкой тряпкой, слегка пропитанной бескислотным вазелином, затем сухой чистой тряпкой.

Приготовление красителей. Подготовка препаратов для микроскопических исследований. Способы окрашивания мазков. Простой метод окраски.

Для окрашивания бактерий необходимо иметь ряд красящих растворов, желательно в особых склянках с пипетками, на которые надеты резиновые баллончики. Краску при помощи пипетки наливают на препарат так, чтобы весь мазок был покрыт ею. Краски разделяются на основные и кислые. Приготовление красящих растворов. Исходным материалом почти для всех необходимых рабочих красок являются насыщенные спиртовые растворы, их готовят следующим образом: 10 г сухой краски высыпают во флакон с притертой пробкой, наливают 100 мл 96° спирта (ректификата) и дают настояться в течение нескольких дней, каждый день взбалтывая раствор. Из таких насыщенных растворов готовят спирто-водные растворы, пригодные для окраски микробов. Существуют простые и сложные методы окраски. При простой окраске используют какой-либо один из красителей, например, фуксин водный (1-2 мин.), метиленовый синий (3-5 мин.). При окрашивании мазка препарат помещают на препаратодержатель (рельсы). На мазок наносят несколько капель красителя. После истечения времени окрашивания препарат промывают водой, высушивают на воздухе и микроскопируют.

 

 

12.Подготовка препаратов для микроскопических исследований. Сложные методы ок­раски бактерий. Методы изучения подвижности бактерий.

Обезжириваем предметно стекло. Наносим каплю стерильного ФР или в/п воды. Вносим культуру и слегка перемешиваем.При необходимости фиксируем.

При сложной окраске последовательно наносятся на препарат определенные красители, различающиеся по химическому составу и цвету. Это позволяет выявить определенные структуры клеток. Окраска по Граму выявляет толщину клеточной стенки, по Цилю-Нильсену - кислотоустойчивость, капсулу – по Бурри-Гинсу, волютин – по Нейссеру, окраска спор проводится по методу Ожешки.

Подвижность определяется в препарате «раздавленная капля», «висячая капля», помутнению в полужидком агаре.

 

Дыхание бактерий (аэробы, анаэробы, факультативные анаэробы, микроаэрофилы). Рост и размножение микроорганизмов, фазы размножения. Пигменты микроорганизмов. Светящиеся и ароматообразующие микроорганизмы

Аэробные микроорганизмы (аэробы) используют энергию, выделяемую при окислении органических веществ кислородом воздуха с образованием неорганических веществ, углекислого газа и воды. К аэробам относятся многие бактерии, грибы и некоторые дрожжи. В качестве источника энергии они чаше всего используют углеводы.

Анаэробные микроорганизмы (анаэробы) не используют для дыхания кислород, они живут и размножаются при отсутствии кислорода, получая энергию в результате процессов брожения. Анаэробами являются бактерии из рода клостридий (ботулиновая палочка и палочка перфрингенс), маслянокислые бактерии и др.

Факультативные анаэробы (могут потреблять глюкозу и размножаться как в аэробных, так и в анаэробных условиях);

Микроаэрофилы (нуждаются в уменьшенной концентрации свободного кислорода);

Термин «рост» означает увеличение массы клеток микроорганизмов в результате синтеза клеточного материала.

Под размножением микробов подразумевают способность их к самовоспроизведению, т. е. увеличению количества особей микробной популяции на единицу объема.

Отдельные группы микроорганизмов размножаются различными способами. У бактерий преобладает деление, может быть почкование. Грибы размножаются при помощи спор, вегетативным способом (участками мицелия), половым путем и почкованием (дрожжи). Вирусы размножаются путем репродукции вирусных частиц внутри клетки- хозяина.

На кривой размножения различают четыре основные фазы роста культуры, сменяющие друг друга в определенной последовательности: начальная фаза (лаг-фаза), экспоненциальная, или логарифмическая (лог- фаза), стационарная фаза и фаза отмирания.

Сине-зеленый пигмент образует синегнойная палочка (Bact. pyocyaneum)—микроб, нередко обнаруживаемый на перевязочном материале, снятом с загрязненной раны. Желтые пигменты различных оттенков от золотисто-желтого до оранжевого продуцируют стафилококки, сарцины. Красный пигмент различных оттенков вырабатывают некоторые актиномицеты, дрожжи, бактерии. Растворимые и нерастворимые в воде. Светящиеся микроорганизмы, или фотобактерии, представляют своеобразную группу живых существ, окислительные процессы в организме которых сопровождаются явлением свечения. Размножаясь на рыбе мясе, фотобактерии вызывают свечение этих продуктов в темноте.
Некоторые виды микробов способны вырабатывать сложные эфиры с ароматным запахом. Ароматные запахи микробов часто напоминают запах фруктов — ананасов, яблок и т. д. Запахи некоторых микробов придают «благородный» аромат различным пищевым веществам — молоку, сливкам, сыру, винам.

16.Условия культивирования аэробных и анаэробных микроорганизмов. Способы вы­деления чистой культуры

Аэробные условия создаются в присутствии кислорода воздуха, в т.ч.на качалке. Анаэробные методы культивирования: физические (высокий столбик, под стеклом), химические (с добавлением поглотителей кислорода, замещение газом), биологические (при использовании культуры, поглощающей кислород). Для выделения чистой культуры используют метод Линднера, Дригальского. Рассевают, используя методы разобщения, посев секторами, разведения.

 

Изучение культуральных свойств микроорганизмов. Требования, предъявляемые к питательным средам.

Характеристика роста бактерий на плотных и жидких средах. При изучении колоний макроскопически (невооруженным глазом) различают ее величину, форму, цвет, прозрачность, характер поверхности. Питательные среды должны обязательно отвечать трем основным требованиям:

1. они должны содержать в достаточном количестве все необходимые питательные вещества (источники энергии, углерода, азота), соли и ростовые факторы;

2. должны иметь оптимальную для роста данного вида бактерий рН;

3. должны иметь достаточную влажность (при их усыхании повышается концентрация питательных веществ, особенно солей, до уровней, тормозящих рост бактерий).

 

Требования безопасности перед началом работы.

Проверить заземление. Проверить исправность токоведущих частей (розеток, вилок, проводов). Проверить наличие резинового коврика.

Загружать не плотно.

Требования безопасности во время работы

Без наличия заземления шкаф в электросеть не включать.

Загрузку шкафа производить при температуре не выше 40-50°С.

Загружать, выгружать шкаф или проводить какой-либо ремонт во время работы шкафа запрещается.

Запрещается помещать в сушильную камеру воспламеняющиеся и горючие материалы.

Во время сушки лабораторной посуды отверстия для воздуха должны быть открыты.

Выгрузку шкафа производить при температуре не выше 40-60°С.

30. Морфология и химический состав фагов. Специфичность фагов. Взаимодействие фага с клеткой.

Природа фагов. Фаги, как считает большинство исследователей, - это организмы, которые подобно всем живым организмам способны размножаться, передавать потомству свои свойства и изменяться под воздействием различных факторов. Они могут инфицировать и разрушать только молодые развивающиеся клетки, являясь их паразитами.

Морфология фагов. Большинство фагов состоит из головки и хвостового отростка, поэтому их сравнивают с головастиками или сперматозоидами. Наиболее изучены Т-фаги кишечной палочки (рис. 21). Их отросток представляет собой полый цилиндр (стержень), покрытый чехлом и заканчивающийся базальной пластинкой с шипами и фибриллами. Размеры фагов, форма и величина головки, длина и строение отростка различны у разных фагов. Например, встречаются фаги с длинным отростком, чехол которого не сокращается, фаги с коротким отростком, без отростка и нитевидные (рис. 22).

Химический состав фагов. Как и все вирусы, фаги состоят из нуклеиновой кислоты одного типа (чаще встречаются ДНК-фаги) и белка. Молекула нуклеиновой кислоты, скрученная в спираль, находится в головке фага. Оболочка фага (капсид) и отросток имеют белковую природу. На свободном конце отростка содержится литический фермент, обычно лизоцим или гиалуронидаза.

Специфичность фагов. Фаги обладают строгой специфичностью. Различают видовую специфичность, т. е. способность паразитировать только в определенном виде микроорганизмов. Именуют фаги обычно по названию микроба-хозяина (стрептококковый, стафилококковый, холерный, дизентерийный и т. д.). Фаги с более строгой специфичностью паразитируют только на определенных представителях данного вида - это типовые фаги. Фаги, лизирующие микроорганизмы близких видов, например видов, входящих в род возбудителей дизентерии (шигелл), называются поливалентными.

Взаимодействие фага с чувствительной клеткой проходит через последовательные стадии. Весь цикл занимает в разных системах фаг - бактерия от нескольких минут до 1-2 ч, Разберем последовательность этого процесса на примере Т-четного фага кишечной палочки.

Стадия I - адсорбция частиц фага на поверхностных рецепторах клетки осуществляется с помощью нитей хвостового отростка. На одной клетке могут адсорбироваться сотни фагов для лизиса клетки достаточно одного). Адсорбция фагов специфична.

Стадия II - проникновение (инъекция) нуклеиновой кислоты фага в клетки у разных фагов происходит по-разному. У Т-фагов кишечной палочки шипы базальной пластинки соприкасаются с клеточной стенкой. Стержень "прокалывает" клеточную стенку. Фермент, находящийся в отростке, чаще всего лизоцим, разрушает цитоплазматическую мембрану. При этом чехол

отростка сокращается, и через канал стержня нуклеиновая кислота фага "впрыскивается" в клетку. Пустая белковая оболочка фага ("тень") остается снаружи.

Стадия III - репродукция белка и нуклеиновой кислоты фага внутри клетки.

Стадия IV - сборка и формирование зрелых частиц фага.

Стадия V - лизис клетки и выход зрелых частиц фага из нее. Обычно происходит разрыв клеточной стенки и в окружающую среду выходит несколько сот новых фагов, способных поражать свежие клетки. Такой лизис называется лизисом изнутри.

 

31. Понятие о вирулентных, умеренных фагах, профаге, лизогении.

В отличие от лизиса изнутри лизис извне происходит тогда, когда на клетке адсорбируется сразу очень большое количество фагов. Они проделывают в клеточной стенке многочисленные отверстия, через которые вытекает содержимое клетки. Таким образом при лизисе извне фаг не размножается, и количество его частиц не увеличивается.

По характеру действия на микроорганизмы различают вирулентные и умеренные фаги.

Вирулентные фаги вызывают лизис зараженной клетки с выходом в окружающую среду большого количества фаговых частиц, способных поражать новые клетки. При этом культура микроорганизмов лизируется. Жидкая среда становится прозрачной - происходит образование фаголизата* - среды, в которой находится большое количество фагов. При развитии вирулентного фага в бактериях, растущих на плотной среде, образуются или прозрачные участки сплошного лизиса, или вырастают отдельные прозрачные образования - колонии фага. Их называют негативными колониями (бляшками). Колонии разных фагов отличаются по величине и структуре. Умеренные фаги лизируют не все клетки в популяции. С частью из них фаги вступают в симбиоз: нуклеиновая кислота фага (его геном) встраивается в хромосому клетки и получает название про фаг. Происходит образование единой хромосомы. Бактериальная клетка при этом не погибает. Профагу ставший частью генома клетки, при ее размножений может передаваться неограниченному числу потомков, т. е. новым клеткам. Явление симбиоза микробной клетки с умеренным фагом (профагом) носит название лизогения, а культура, в которой имеется профаг, называется лизогенной. Это название отражает способность профага спонтанно покидать хромосому клетки и, переходя в цитоплазму, превращаться в вирулентный фаг. Те клетки культуры, в которых образовался вирулентный фаг, погибают (лизируются), остальные сохраняют лизогенность.

Лизогенные культуры по своим основным свойствам не отличаются от исходных, но они устойчивы к повторному заражению одноименным фагом. При действии на лизогенную культуру проникающего излучения (определенных доз и экспозиции рентгеновских, космических лучей), некоторых химических веществ и ряда других факторов продукция вирулентного фага и лизис им клеток культуры значительно увеличиваются.

Умеренные фаги могут принести вред микробиологическому производству. Например, если штаммы-продуценты вакцин, антибиотиков и других биологических веществ оказываются лизогенными, существует опасность перехода умеренного фага в вирулентный, что повлечет за собой лизис производственного штамма.

Умеренные фаги являются мощным фактором изменчивости микроорганизмов. Профаг может изменить некоторые свойства микробной культуры, например сделать ее способной к токсинообразованию, что наблюдается среди дифтерийных палочек, возбудителя скарлатины и др. Кроме того, переходя в вирулентную форму и лизируя клетку, фаг может захватить часть хромосомы клетки-хозяина и перенести эту часть хромосомы в другую клетку, где фаг снова перейдет в профаг, а клетка получит новые свойства.

32. Распространение фагов в природе. Применение фагов в медицине. Методы выделения и обнаружения бактериофага. Титрование бактериофага.

Распространение фагов в природе повсеместное. Фаги встречаются там, где находятся чувствительные к ним микроорганизмы: в воде, почве, сточных водах, выделениях человека и животных и т. д. Почти все известные бактерии являются хозяевами специфических для них фагов.

Устойчивость фагов к физическим и химическим факторам выше, чем у вегетативных форм их хозяев. Фаги выдерживают нагревание до 75° С, длительное высушивание, рН от 2,0 до 8,5. Они не чувствительны к антибиотикам, тимолу, хлороформу и ряду других веществ, уничтожающих сопутствующую микрофлору. Поэтому эти вещества используют при выделении и сохранении фагов. Кислоты и дезинфицирующие вещества губительны для фагов.

Материалом, из которого выделяют фаг, обычно являются фильтраты, полученные с помощью бактериальных фильтров из объектов внешней среды, органов и выделений человека и животных, культур микроорганизмов и т. д.

Перед фильтрацией исследуемый материал подготавливают следующим образом:

Жидкости (кровь, мочу, воду, смывы с предметов и т. п.) освобождают от крупных частиц с помощью бумажного фильтра или центрифугированием, чтобы они не забили поры бактериального фильтра.

Вязкий материал (гной, кал) эмульгируют в изотоническом растворе натрия хлорида или бульоне, после чего освобождают от крупных частиц, как описано выше.

Плотный материал (кусочки органов, пищи и т. п.) предварительно измельчают - обычно растирают в ступке со стерильным кварцевым песком. Вместо песка можно использовать стерильные кончики пастеровских пипеток или битые покровные стекла. Растертый материал тщательно эмульгируют в изотоническом растворе натрия хлорида или бульоне и освобождают от крупной взвеси.

О наличии фага в том или ином субстрате узнают по лизису чувствительной к нему микробной культуры (тест-культура).

Обнаружение фага на плотных средах. Тест-культуру засевают "газоном" (см. главу 7) на поверхность агара в чашке Петри. Посев подсушивают в термостате 30-40 мин при открытой крышке, после чего на него наносят каплю изучаемого материала. Через несколько минут, когда жидкость впитается, чашки помещают в термостат на 18-20 ч. Если в изучаемом материале есть фаг, произойдет лизис культуры и на месте, куда была нанесена капля, культура или совсем не вырастет (сплошной лизис) или образуются отдельные колонии фага.

Обнаружение фага в жидких средах. В две пробирки с одинаковым количеством бульона вносят по одной капле культуры, микроба, в отношении которого изучают фаг. В одну из них добавляют исследуемый фаг или фильтрат материала, в котором его определяют. Вторая пробирка служит контролем роста культуры. Пробирки помещают в термостат на 12-20 ч. Учет результатов производят только при наличии роста культуры в контроле (помутнение среды). Отсутствие видимого роста или последующее просветление среды в пробирке с исследуемым материалом свидетельствует о присутствии фага. Если содержимое этой пробирки мутное, исследование необходимо дополнить посевом на плотную среду: помутнение могло произойти от роста устойчивой к фагу культуры. Только в том случае, если в посеве на агар фаг не будет обнаружен, можно сделать вывод, что его нет в изучаемом материале.

Титрование фага по Грация (на плотной среде) методом агаровых слоев позволяет определить количество частиц фага в титруемом материале. Метод основан на том, что каждая частица фага дает зону просветления (лизиса) на чашке с газоном чувствительного к нему микроба, т. е. образует отдельную колонию.

Постановка опыта. Чашки с 20-25 мл МПА покрывают стерильной фильтровальной бумагой и подсушивают в термостате или под бактерицидной лампой (расстояние от лампы не более 2 м). Титруемый фаг разводят от 10-1 до 10"10 (как в предыдущем опыте) и по 1 мл переносят в другие пронумерованные пробирки (соответственно из 1-й в 1-ю и так далее до 10-й), в которые заранее наливают по 2,5 мл 0,7% МПА, расплавленного и остуженного до 45° С. В каждую из этих пробирок добавляют по 0,1 мл тест-культуры. Содержимое пробирок быстро перемешивают (не дать застыть агару) и выливают на поверхность среды в чашки Петри с номерами, соответствующими номерам пробирок. Через 30 мин чашки ставят в термостат.

Учет результатов проводят через 18-20 ч. При большой концентрации фага (в первых чашках) произойдет сплошной лизис культуры. В тех разведениях фага, в которых находилось небольшое количество частиц фага, появятся изолированные колонии, которые подсчитывают. Чтобы не ошибиться в счете, каждую учтенную колонию помечают со стороны дна чашки. Аппарат для счета колоний намного облегчает работу (см. рис. 54). Чтобы установить количество частиц фага в 1 мл фаголизата, пользуются формулой: n = y*x, где n - искомое число; у - количество выросших на чашке колоний фага; x - разведение фага в чашке, в которой подсчитаны колонии.

Например, если в чашке с разведением фага 10-8 (1:108) выросло 25 колоний, то в 1 мл исходной жидкости содержится 25*108 или 2,5*109 частиц фага.

Более точные результаты получают, если определяют количество частиц фага в исходной жидкости по нескольким разведениям и вычисляют среднее арифметическое. Например, при разведении фага 10-6 выросло 320 колоний, следовательно, в 1 мл исходной жидкости было 320*10 или 3,2*108 частиц фага. При разведении фага 10-7 выросло 42 колонии, следовательно, в исходной жидкости было 4,2*108/мл частиц фага. При разведении фага 10-8 выросло 5 колоний, следовательно, в исходной жидкости было 5*108/мл частиц фага. Сложив величины, полученные при этих подсчетах и разделив сумму на 3 (количество проведенных подсчетов), устанавливают число частиц фага в 1 мл титруемого препарата. В нашем примере оно равно 4,1*108.

Подсчитывать колонии лучше всего на чашках, где выросло не меньше 5 и не больше 50 колоний. В противном случае страдает точность подсчёта. Если на чашке много колоний, чашку можно разделить на несколько секторов, сосчитать колонии на одном из них и полученную цифру умножить на количество секторов.

Как правило, все биологические исследования проводят в трех параллельных опытах. В данном примере каждое разведение фага одновременно титруют трижды.

33. Понятие о генетике, изменчивости, наследственности бактерий. Бактериальная хромосома. Плазмиды.

Способность живых организмов сохранять определенные признаки на протяжении многих поколений называется наследственностью.

В процессе изучения наследственности оказалось, что каждое последующее поколение под влиянием различных факторов может приобретать признаки, отличающие их от предыдущих поколений. Это свойство называется изменчивостью. Таким образом наследственность и изменчивость тесно связаны между собой.

Наука, изучающая наследственность и изменчивость живых организмов, называется генетикой (от греч. genos - рождение).

Еще в XIX веке Ч. Дарвин доказал, что все существующие виды живых организмов произошли путем изменчивости от немногих форм, а возникшие изменения, передаваемые по наследству, являются основой эволюционного процесса. Теория Дарвина получила высшую оценку у классиков марксизма- ленинизма. Ф. Энгельс рассматривал ее как одно из величайших открытий XIX века.

Изучение наследственности и изменчивости у высших организмов связано с большими трудностями из-за большой продолжительности их жизни и немногочисленности потомства.

Удобным объектом для этого изучения являются микроорганизмы, для которых характерен короткий жизненный цикл, быстрое размножение и способность давать многочисленное потомство. Кроме того, они обладают выраженной морфологией, которую можно изучать визуально при помощи светового микроскопа. Микроорганизмы биохимически активны, что легко учитывать при использовании специальных питательных сред.

Способность микроорганизмов изменять свои свойства при воздействии различных факторов (температура, ультрафиолетовое и рентгеновское излучение и др.) позволяет широко использовать их в качестве модели при изучении наследственности и изменчивости.

Первым объектом генетических исследований была кишечная палочка, которая хорошо культивируется в лабораторных условиях. Важное значение имело также то, что морфологические, культуральные и биохимические свойства этой бактерии хорошо изучены. В дальнейшем объектом генетических исследований стали и другие бактерии, а также вирусы.

Исследования генетики микроорганизмов показали, что у них роль носителя генетической информации играет ДНК (у некоторых вирусов РНК).

Молекула ДНК в бактериях состоит из двух нитей, каждая из которых спирально закручена относительно другой. При делении клетки нитчатая спираль удваивается- каждая из нитей служит как бы шаблоном или матрицей, на которой строится новая нить. При этом каждая нить, возникшая в процессе деления клеток, содержит вновь образовавшуюся двунитчатую молекулу ДНК.

В состав ДНК входят четыре азотистых основания - аденин, гуанин, цитозин и тимин, порядок расположения в цепи у разных организмов определяет их наследственную информацию, закодированную в ДНК.

Функциональной единицей наследственности является ген, который представляет собой участок нити ДНК. В генах записана вся информация, касающаяся свойств клетки.

Полный набор генов, которым обладает клетка, называется генотипом. Г ены подразделяются на структурные, несущие информацию о конкретных белках, вырабатываемых клеткой, и гены-регуляторы, регулирующие работу структурных генов. Например, клетка вырабатывает те белки, которые необходимы ей в данных условиях, однако при изменении условий гены- регуляторы изменяют свойства клетки, приспосабливая их к новым условиям.

Изменения морфологических, культуральных, биохимических и других свойств микроорганизмов, возникающие под действием внешних факторов, взаимосвязаны. Например, изменения морфологических свойств сопровождаются обычно изменениями физиологических особенностей клетки. Плазмиды - это сравнительно небольшие внехромосомные молекулы ДНК бактериальной клетки. Они расположены в цитоплазме и имеют кольцевую структуру. В плазмидах содержится несколько генов, функционирующих независимо от генов, содержащихся в хромосомной ДНК.

Типичным признаком плазмид служит их способность к самостоятельному воспроизведению (репликации).

Они могут также переходить из одной клетки в другую и включать в себя новые гены из окружающей среды. К числу плазмид относятся:

Профаги, вызывающие у лизогенной клетки ряд изменений, передающихся по наследству, например способность образовывать токсин (см. трансдукцию).

F-фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации (см. конъюгацию).

R-фактор, придающий клетке устойчивость к лекарственным препаратам (впервые R-фактор был выделен из кишечной палочки, затем из шигелл). Исследования показали, что R-фактор может быть удален из клетки, что вообще характерно для плазмид.

R-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться причиной формирования трудно диагностируемых атипичных штаммов.

Бактериоциногенные факторы (col-факторы), которые впервые были обнаружены в культуре кишечной палочки (Е. coli), в связи с чем названы колицинами. В дальнейшем они были выявлены и у других бактерий: холерного вибриона - вибриоцины, стафилококков - стафилоцины и др.

Col-фактор - это маленькая автономная плазмида, которая детерминирует синтез белковых веществ, способных вызывать гибель бактерий собственного вида или близкородственного. Бактериоцины адсорбируются на поверхности чувствительных клеток и вызывают нарушения метаболизма, что приводит клетку к гибели.

В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обработка бактерий УФ-лучами) количество

колицинпродуцирующих клеток увеличивается.

 

34. Фенотипическая изменчивость. Факторы, влияющие на изменчивость микроорганизмов. Трансформация, трансдукция, конъюгация.

Генетические рекомбинации. Трансформация. Клетки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными. Состояние компетентности часто совпадает с

логарифмической фазой роста.

Трансдукция - это перенос генетической информации (ДНК) от бактерии донора к бактерии реципиенту при участии бактериофага. Трансдуцирующими свойствами обладают в основном умеренные фаги. Размножаясь в бактериальной клетке, фаги включают в состав своей ДНК часть бактериальной ДНК и передают ее реципиенту. Различают три типа трансдукции: общую, специфическую и абортивную.

1. Общая трансдукция - это передача различных генов, локализованных на разных участках бактериальной хромосомы. При этом бактерии доноры могут передать реципиенту разнообразные признаки и свойства - способность образовывать новые ферменты, устойчивость к лекарственным препаратам и т. д.

2. Специфическая трансдукция - это передача фагом только некоторых специфических генов, локализованных на специальных участках бактериальной хромосомы. В этом случае передаются только определенные признаки и свойства.

3. Абортивная трансдукция - перенос фагом какого-то одного фрагмента хромосомы донора. Обычно этот фрагмент не включается в хромосому клетки реципиента, а циркулирует в цитоплазме. При делении клетки реципиента этот фрагмент передается только одной из двух дочерних клеток, а второй клетке достается неизмененная хромосома реципиента.

С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.117 с.