Устройство лесотранспортера с гибким тяговым органом. Определение тягового усилия и полного натяжения тягового органа лесотранспортера. — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Устройство лесотранспортера с гибким тяговым органом. Определение тягового усилия и полного натяжения тягового органа лесотранспортера.

2018-01-04 359
Устройство лесотранспортера с гибким тяговым органом. Определение тягового усилия и полного натяжения тягового органа лесотранспортера. 0.00 из 5.00 0 оценок
Заказать работу

 

Транспортеры подразделяются по типу тягового устройства, виду лесного груза и способу его перемещения. По типу тяго­вого устройства различают: транспортеры с гибким тяговым органом, винтовые, роликовые транспортеры, водяные транспортные лотки и пневматические транспортные установки.


Рис. 9.1. Схема транспортера с гибким тяговым органом: / — тяговый орган; 2 - рабочий орган,; 3 — тяговое (ведущее) колесо; 4 — неподвиж­ные опоры; 5 — направляющее колесо; 6 — натяжное устройство; 7 — привод

Наиболее распространенным типом транспортного устрой­ства непрерывного действия являются транспортеры с гибким тяговым органом, в качестве которого применяют цепь, ленту или канат. Общая схема транспортера с гибким тяговым орга­ном представлена на рис. 9.1 и включает замкнутый тяговый орган, два концевых колеса, натяжное устройство, неподвижные опоры и привод. Тяговый орган огибает концевые колеса, на нем для захвата груза закреплены рабочие органы. Концевое колесо приводящее в движение тяговый орган называется тяго­вым или ведущим, а колесо, только изменяющее направление движения тягового органа, носит название направляющего. Обе ветви тягового органа или одна из них поддерживаются непо­движной опорой. Для натяжения тягового органа применяют натяжное устройство. Движение ведущему колесу и через него тяговому органу передается от привода транспортера.

Тяговый орган приводит в движение перемещаемый груз. В процессе работы он огибает концевые колеса, поэтому дол­жен быть достаточно гибким, прочным, иметь малый вес и быть удобным для прикрепления к нему рабочего органа. Всем этим требованиям в той или иной мере отвечают цепи, ленты и про­волочные канаты. Наибольшее распространение имеют цепи, конструкцию которых приспосабливают к типу транспортного устройства. Они более гибки, чем канаты и ленты, более прочны и удобны для прикрепления к ним рабочих органов. К недостат­кам их относят сравнительно большой вес и неравномерность движения, что вызывает динамические нагрузки и ограничи­вает возможность применения больших скоростей. Ленты и ка­наты менее приспособлены к условиям работы тягового органа, к ним трудно прикреплять рабочие органы, они обладают боль­шей жесткостью* а ленты, кроме того, имеют и малую прочность.

Перед работой тяговый орган — цепь, канат или ленту натя­гивают с силой So, представляющей собой первоначальное, или монтажное, натяжение, создаваемое с помощью натяжного уст­ройства. К тяговому органу во время движения от ведущего колеса передается тяговое усилие Т, поэтому натяжение тяго­вого органа в любой точке по его длине равно

Sn = Tn + S0, (9.52)

где Гп и Sn — тяговое усилие и натяжение в точке п.

Тяговое усилие в конце какого-нибудь участка тягового ор­гана равно сумме сопротивлений на этом участке и тягового усилия в начале этого участка т. е.

(9.53)

Таким образом, тяговое усилие в какой-либо точке тягового органа есть сумма сопротивлений предшествующих участков этого органа. Тяговый орган работает на растяжение, поэтому тяговое усилие не может быть отрицательным, если даже сопро­тивления будут отрицательными, поэтому необходимо опреде­лить порядок суммирования сопротивлений. Для того чтобы тяговое усилие всегда было положительным, необходимо на­чать суммирование сопротивлений от той точки тягового органа, где тяговое усилие равно нулю, а натяжение тягового органа наименьшее, т. е. Sn = So.

В горизонтальных транспортерах такой нулевой точкой для тягового усилия будет точка сбегания тягового органа с веду­щего колеса. В транспортерах с наклонными участками, сопротивление на этих участках может быть по­ложительным и отрицательным. Если ца нижней ветви (см. рис. 9.7, а) сопротивление P1-2 >0, т. е. положительно, то ну­левой точкой в этом случае будет точка 1 и Т1 = 0. Напротив, если P1-2 <0 и сопротивление P1-2 отрицательно, то тяговое усилие будет равным нулю в точке 2, т. е. Т2 = 0.

Таким образом, для определения тягового усилия и сумми­рования сопротивлений необходимо определить знак суммы со­противлений холостой ветви тягового органа и по этому знаку установить положение нулевого значения тягового усилия. От этой нулевой точки и суммируются сопротивления движению отдельных участков.

Для схемы на рис. 9.7, а нулевое значение тягового усилия возможно в точке / или 2. Для первого случая, когда P1-2 >0 или wL>H, — нулевая точка 1, поэтому Т1 = 0 и натяжение S1 = S0. Тяговое усилие в точке 2 T2 = P1-2 и натяжение S2 = P1-2 + S0. Тяговое усилие в точке 3 равно сумме сопротивлений на криволинейном участке 2—3 и тягового усилия в точке 2, т. е. Тз = P2-3 + Т2 или Тз = P1-2 + P2-3. Так как участок 23 криво­линейный, то сопротивление на нем является сопротивлением направляющего колеса, т. е. P2-3 = Pн и Sн = S2 поэтому P2-3= CKS2 или P2-3= CK(P1-2 + So). Тяговое уси­лие в точке 4 Т43 + P3-4, т. е.

 

Т4= P1 - 2 + P2 - 3 + P3 – 4 или

Т4= P1 - 2 + CK(P1-2 + So). + P3 – 4

Подставив значения P1-2 и P3-4 из и , получим

 

Т4 = + + CK [ +So] (9.54)

Наибольшее тяговое усилие будет в точке 4, т. е. в точке набегания тягового органа на ведущее колесо. График измене­ния тягового усилия по длине тягового органа между точками 1, 2, 3 и 4 приведен на рис. 9.8, а. Из него видно, что тяговое усилие в точке 4 для первого случая равно сумме сопротивле­ний на трех участках.

В формуле (9.54) первое слагаемое 2qTwL представляет со­бой сопротивление движению самого тягового органа, коэф­фициент 2 указывает, что в расчет принята сумма длин обеих ветвей тягового органа. Второе слагаемое qг{wL + H) —сопро­тивление движению перемещаемого груза, в котором qгwL — со­противление трения и qгH — сопротивление подъема. Третий и последний член с коэффициентом Ск представляет собой сопро­тивление направляющего колеса. Так как третье слагаемое составляет 1... 2 % от общего тягового усилия, то для приближенных расчетов можно принять Ск = 0 и тогда

 


Рис. 9.7. Расчетные схемы для определения сопротивления движению

T4==2q wL + qг(wL+H). (9.55)

Для второго случая, когда P1-2 <0 или wL<H, суммирова­ние сопротивлений следует вести от точки 2, так как для нее тяговое усилие Т2 = 0 и натяжение S2 = S0. Тяговый орган на участке 12, двигаясь вниз под действием силы тяжести, будет производить натяжение в точке 1, равное T1 = P1-2 или Т2 = - qт(wL - H).). Тяговое усилие в точке 3 Т3 = P2 - 3, где P2 - 3 — сопротивление криволинейного участка 23, т. е. сопротивление направляющего колеса, определяемое по формуле P2 - 3 = Pк = СКS2; так как S2 = So, то P2 - 3 = CKS0 и T3 = CKSo.

Тяговое усилие в точке 4 при набегании тягового органа на ведущее колесо составит T4 = Тз + P3 – 4 или Т4 = P2 - 3 + P3 – 4.Под­ставив значение P3 – 4 из получим

Т4= CKSo+ (9.56)

Следовательно, для второго случая, когда P1-2 <0, тяговое усилие в точке 4 равно сопротивлению только двух участков 23 и 34. График тягового усилия для этого случая пред­ставлен на рис. 9.8,6. Таким образом, при P1-2>0 и P1-2 <0 тя­говое усилие Т4 в точке 4 имеет разное значение.

Более сложная схема транспортера представлена на рис. 9.8, в. Она отличается от предыдущей (см. рис. 9.7, а) тем, что на обеих ветвях для изменения направления движения тяго­вого органа имеются шины А и В выпуклого профиля. Вслед­ствие этого появляются дополнительные сопротивления движе­нию Ра и Ръ, приложенные в точках А и В.

Приближенно можно принять, что натяжение в точке А равно Sa= Ta+So, где Та = P1- A, или по формуле при Sa = 0 Sa = qTwL1 + SQ. Следовательно, принимая в формуле Р ш = Cш Sн, при Ра=Рш и Sn=Sa, получаем Pa=Cш( wL +So). Для верхней ветви Pb = Cш Sb, где Sb — натяжение тягового органа в точке В, т. е. Sb = Tb + S0, или Sb = T3 + P2 - b + S0 где T3 = Cн S2 + T2. Зна­чение усилия T2 в точке 2 зависит от знака суммы сопротивле­ния движению на нижней ветви. Если Т2 =P1-а + Pа + Pа-2 и Т1=0.

Так как P1-а + Pа-2 = P1-2 и P3-b + Pb-4 = P3-4 , то

Т4= P1-2 + P2-3 + P3-4 + Ра + Ръ (9.57)

Если P1-2 + Ра + Ръ <0, то Т2=0, T3 = CKSo

Т4=P2-3 + P3-4+ Ръ (9.58)

Схема транспортера, представленная на рис. 9.8, г, отлича­ется от предыдущей наличием шин не только выпуклого А и В, но и вогнутого профиля С и D. Сопротивление движению по вогнутой шине будет отрицательным и поэтому при расчете не учитывается. Расчет в этом случае ведется по спрямленному профилю 1— А2 и 3В4, как и при выпуклом профиле.

Если нижняя ветвь транспортера провисает (рис. 9.8, д) в связи с отсутствием на участке 12 неподвижной опоры, то на участке 12 =0и сопротивление P1-2 всегда отрицательно, т. е. P1-2 = -qТн и Тl =qTH. В точке 2 тяговое усилие Т2 =0, а тяговое усилие в точке 4 определяется по (9.56).

 

 

Рис. 9.8. Расчетные схемы для определения тягового усилия

 


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.