Постулаты Клаузиуса и Кельвина — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Постулаты Клаузиуса и Кельвина

2018-01-04 400
Постулаты Клаузиуса и Кельвина 0.00 из 5.00 0 оценок
Заказать работу

Необратимость процессов теплопередачи от горячего тела к холодному и превращения механической энергии во внутреннюю была постулирована во втором законе термодинамики. Две эквивалентные формулировки второго закона термодинамики принадлежат Клаузиусу и Томсону (лорду Кельвину).

Постулат Клаузиуса. Невозможен процесс, единственным результатом которого является передача тепла от менее нагретого тела к более нагретому.

Процесс, при котором тепло передаётся от менее нагретого тела к более нагретому, происходит в холодильных машинах. Но эта передача тепла не является единственным результатом данного процесса. Происходят изменения и в других телах — например, работает внешний источник энергии. Постулат Клаузиуса утверждает невозможность самопроизвольной теплопередачи от холодного тела к горячему.

Постулат Кельвина. Невозможен циклический процесс, единственным результатом которого является получение работы за счёт охлаждения теплового резервуара.

В тепловом двигателе работа A получается получается за счёт отвода тепла Q 1 от теплового резервуара — нагревателя. Но получение работы не является единственным результатом данного процесса. Мы уже отмечали, что для обеспечения цикличности работы теплового двигателя какое-то количество теплоты Q 2 должно быть отдано другому резервуару — холодильнику. Поэтому происходят изменения и в других телах.

Фактически постулат Кельвина запрещает существование теплового двигателя с КПД, равным единице.

Гипотетический тепловой двигатель, целиком превращающий в работу поступающее от нагревателя тепло, называется вечным двигателем второго рода. Он не противоречит закону сохранения энергии. Если бы такой двигатель был изобретён, люди получили бы возможность без потерь превращать в работу огромные запасы внутренней энергии морей и океанов. Но невозможность создать вечный двигатель второго рода как раз и утверждается постулатом Кельвина.

Эквивалентность постулатов Клаузиуса и Кельвина

Постулаты Клаузиуса и Кельвина логически следуют друг из друга. Показать это совсем не сложно.

Предположим сначала, что неверен постулат Клаузиуса. Тогда существует процесс X, единственным результатом которого является передача тепла Q от менее нагретого тела L к более нагретому телу M.

Возьмём тепловой двигатель, нагревателем которого является тело M, а холодильником — тело L. Двигатель подберём так, чтобы за цикл к холодильнику поступало как раз тепло Q. Совершим один цикл, в ходе которого двигатель производит работу A, после чего осуществим процесс X. Тепло Q вернётся к телу M.

Тогда окажется, что в результате циклического процесса наш двигатель произвёл работу A единственно за счёт тепла, отведённого от нагревателя M. Следовательно, неверен постулат Кельвина.

Наоборот, предположим, что неверен постулат Кельвина. Тогда существует циклический процесс Y, единственным результатом которого является получение работы A за счёт тепла, отводимого от некоторого резервуара L.

Возьмём тело M — более горячее, чем L. Запустим процесс Y. От тела L будет отведено тепло Q. Полученную работу A = Q превратим во внутреннюю энергию тела M (например, с помощью трения).

В итоге мы осуществим процесс, единственным результатом которого является передача тепла Q от менее нагретого тела L к более нагретому телу M. Никаких других изменений не произошло (ведь процесс Y — циклический!). Стало быть, постулат Клаузиуса неверен.

Обратимые процессы

В разделе «Тепловые машины» мы отметили, что изотермические и адиабатные процессы делают машину Карно обратимой, но не объяснили — почему.

Кроме того, мы сказали, что все реальные процессы необратимы. Как это увязать с упомянутой обратимостью цикла Карно?

Прежде всего, нужно рассказать о важнейшей (наряду с идеальным газом) идеализации в термодинамике — равновесных обратимых процессах.

Равновесное состояние газа (и вообще любой термодинамической системы) — это состояние теплового равновесия[24]. В этом состоянии определены значения макроскопических параметров: давления, объёма, температуры...Равновесное состояние может быть изображено точкой на диаграммах состояния (т. е. pV -, V T - и pT -диаграммах).

Равновесный процесс представляет собой последовательную цепочку близких равновесных состояний. Равновесный процесс может быть изображён непрерывной линией на диаграммах состояния.

Как вы теперь понимаете, все процессы, графики которых мы рассматривали в предыдущих листках, предполагались равновесными — ведь только в этом случае можно говорить о «графике процесса».

Процесс можно считать равновесным, если параметры газа меняются достаточно медленно. Настолько медленно, что в каждый момент времени будет успевать устанавливаться новое равновесное состояние. Такие медленные равновесные процессы называют ещё квазистатическими.

Вот пример квазистатического (равновесного) процесса. Пусть имеется вертикальный цилиндр с газом под поршнем. Положим на поршень песчинку. Потом другую, третью, сотую, тысячную. Получим чрезвычайно медленное сжатие газа, представляющее собой череду сменяющих друг друга равновесных состояний.

Теперь начнём снимать песчинки обратно, всё так же по одной. Получим квазистатическое равновесное расширение газа. При этом газ пройдёт в обратном направлении те же самые состояния, которые он проходил в предыдущем процессе равновесного сжатия. Действительно, раз уж при каждом положении поршня успевает установиться тепловое равновесие, то значения макроскопических параметров определяются только самим положением поршня, но не направлением его движения.

Мы видим, что равновесный процесс является обратимым — его можно провести в обратном направлении через ту же самую цепочку равновесных состояний. На диаграммах состояния обратимый процесс идёт по одной и той же линии как в прямом, так и в обратном направлении.

Если же вместо песчинок поставить на поршень увесистую гирьку, то процесс сжатия газа пойдёт весьма быстро. Давление газа непосредственно под поршнем будет больше, чем у дна сосуда, и мы уже не сможем охарактеризовать состояние газа в каждый момент времени какимто одним значением давления. Состояния, проходимые газом, не будут состояниями теплового равновесия (макроскопические параметры не успевают принимать определённые значения для всего газа). Стало быть, процесс быстрого сжатия газа будет неравновесным.

Кроме того, такой процесс будет необратимым. Ведь если столь же быстро расширять газ, то давление непосредственно под поршнем теперь окажется меньше, чем у дна сосуда. Следовательно, при быстром расширении газ проходит через иную цепочку состояний, чем в процессе сжатия.

Процессы, идущие бесконечно медленно, являются обратимыми. Это идеализация. Реальные процессы идут с конечной скоростью и потому необратимы.

Обратимость машины Карно

Пусть некоторая тепловая машина осуществляет цикл между нагревателем с фиксированной температурой T 1 и холодильником с фиксированной температурой T 2. Как сделать этот цикл обратимым?

Разумеется, все процессы цикла должны быть квазистатическими — наша машина будет работать бесконечно медленно[25]. Но этого не достаточно. То, что машина обязана работать в прямом и обратном направлении (т.е. как тепловой двигатель и как холодильная машина) между одними и теми же нагревателем и холодильником, налагает дополнительные требования.

При работе в прямом направлении рабочее тело (газ) получает от нагревателя тепло Q 1 и отдаёт холодильнику тепло Q 2. Эти процессы теплопередачи должны быть обратимы: в самом деле, при работе в обратном направлении газ должен забрать у холодильника тепло Q 2 и отдать нагревателю тепло Q 1, проходя через те же самые состояния, что и в прямом направлении.

Можно ли сделать теплопередачу обратимой? Ведь если температура газа будет отличаться от температуры нагревателя (холодильника), передача тепла будет необратима в силу постулата Клаузиуса!

Единственный выход состоит в том, чтобы тепловое взаимодействие газа с нагревателем и холодильником происходило изотермически. В ходе теплообмена газ имеет ту же температуру, что и нагреватель (холодильник), и бесконечно медленно, обратимым образом обменивается с ними теплом. Вот откуда берутся изотермы в цикле Карно: только они и могут соответствовать тепловому контакту газа с нагревателем и холодильником.

Изменение температуры газа в цикле тоже должно происходить обратимо; значит, и тут нужно исключать необратимый теплообмен. Единственная возможность — теплоизолировать газ и использовать адиабатные процессы. Если проводить их квазистатически, они будут обратимыми.

Таким образом, цикл Карно — это единственный циклический процесс, который можно осуществлять обратимым образом между данными нагревателем и холодильником с фиксированными температурами.

Разумеется, машина Карно является идеализацией — уже потому, что использует бесконечно медленные процессы. Поэтому её часто называют идеальной тепловой машиной.


[1] Это движение называется тепловым движением.

[2] Изображение с сайта en.wikipedia.org.

[3] Изображение с сайта nv-magadan.narod.ru.

[4] Автор картинки — Ben Mills.

[5] Следует отметить, что тепловое равновесие является динамическим равновесием. Так, при тепловом равновесии жидкости и её насыщенного пара весьма интенсивно идут взаимные превращения жидкости и пара. Но это — процессы молекулярного масштаба, они происходят с одинаковыми скоростями и компенсируют друг друга. На макроскопическом уровне количество жидкости и пара со временем не меняется.

[6] В области температур выше 1000 C (раскалённые газы, расплавленные металлы) используются бесконтактные высокотемпературные термометры — пирометры. Их действие основано на измерении интенсивности теплового излучения в оптическом диапазоне.

[7] При особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение.

[8] У многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул.

[9] Процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики.

[10] Изображение с сайта educationalelectronicsusa.com.

[11] Тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер.

[12] Изображения с сайта physics.arizona.edu.

[13] Подробнее об этом будет рассказано в электродинамике, в теме про электромагнитную индукцию.

[14] Изображения с сайта beodom.com.

[15] Изображение с сайта en.wikipedia.org.

[16] На самом деле некоторая часть подводимого тепла расходуется на совершение работы по увеличению средних расстояний между частицами — как мы знаем, тела при нагревании расширяются. Однако эта часть столь мала, что её можно не принимать во внимание.

[17] Природа приняла свои меры: обладай лёд такой же удельной теплотой плавления, как и свинец, вся масса льда и снега таяла бы с первыми оттепелями, затопляя всё вокруг.

[18] Часто у проруби можно увидеть сидящих птиц. Они там греются!

[19] Теперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких;-)

[20] Температуры кипения, приводимые в таблицах учебников и справочников — это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от 100 C.

[21] В реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации.

[22] В реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло.

[23] Подчеркнём ещё раз, что речь идёт о невозможности самопроизвольного протекания обратного процесса. В принципе передать энергию от холодного тела к горячему можно — но только за счёт работы внешнего источника. Именно этим и занимаются холодильные машины.

[24] Вспоминайте раздел «Температура»!

[25] Мощность такой машины равна нулю!


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.035 с.