Глк – D-глюкоза, Гал – D-галактоза, Фук – L-фукоза, Глк NАц – N-ацетил- D-глюкозамин, Гал NАц – N-aцетил- D-галактозамин. — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Глк – D-глюкоза, Гал – D-галактоза, Фук – L-фукоза, Глк NАц – N-ацетил- D-глюкозамин, Гал NАц – N-aцетил- D-галактозамин.

2018-01-04 273
Глк – D-глюкоза, Гал – D-галактоза, Фук – L-фукоза, Глк NАц – N-ацетил- D-глюкозамин, Гал NАц – N-aцетил- D-галактозамин. 0.00 из 5.00 0 оценок
Заказать работу

Прерывистые связи между остатками сахаров означают, что существует много типов соединений.

Ген Lewis, доминантный ген-секретор, ген-А, ген-В кодируют ферменты-трансферазы, переносящие и присоединяющие остатки сахаров. При наличии гена А или В, и рецессивного гена-секретора в гомозиготном состоянии антигены А и В не образуются (бомбейский феномен).

Примечание: Отличительной особенностью антигена Н является наличие его в биологических жидкостях секреторов групповых веществ и отсутствие – у несекреторов. Антиген 0, в отличие от антигена Н, А и В, с секретами (слюна, сперма) не выделяется.

Рис. 5. Схема связи остатков сахаров с наружной мембраной эритроцита у людей с III (В) группой крови 0, А, В-системы.

Глк – D-глюкоза, Гал – D-галактоза, Фук – L-фукоза, Глк NАц – N-ацетил- D-глюкозамин, Гал NАц – N-aцетил- D-галактозамин.

Прерывистые связи между остатками сахаров означают, что существует много типов соединений.

 

Рис. 6. Схема связи остатков сахаров с наружной мембраной эритроцита у людей с II (А) группой крови 0, А, В-системы.

Глк – D-глюкоза, Гал – D-галактоза, Фук – L-фукоза, Глк NАц – N-ацетил- D-глюкозамин, Гал NАц – N-aцетил- D-галактозамин.

Прерывистые связи между остатками сахаров означают, что существует много типов соединений.

 

Рис. 7. Схема связи остатков сахаров с наружной мембраной эритроцита у людей с I (0) группой крови 0, А, В-системы.

Глк – D-глюкоза, Гал – D-галактоза, Фук – L-фукоза, Глк NАц – N-ацетил- D-глюкозамин, Гал NАц – N-aцетил- D-галактозамин.

Прерывистые связи между остатками сахаров означают, что существует много типов соединений.

 

 

 

Рис. 8. Схема структуры трансмембранных гликопротеинов МНС класс 1 (слева) и МНС класса 2 (справа). (Из кн. Б. Албертс и др. «Молекулярная биология клетки», том 5.)

 

 

Класс I ГКГ содержится на оболочках всех соматических клеток, обладающих ядром. Они презентируют вирусные антигены цитотоксическим Т-лимфоцитам. ГКГ класса II связаны с плазматической мембраной В-лимфоцитов, макрофагов, дендритных и некоторых других антигенпредставляющих (презентирующих) клеток, которые представляют в иммунных ответах для распознавания Т-лимфоцитам переработанные ими до пептидов чужеродные антигены, вслед, за чем запускается развитие иммунных защитных реакций.

Функции мембран

 

 

1. Ограничение и обособление клеток и органелл. Обособление клеток от межклеточной среды обеспечивается плазматической мембраной, защищающей клетки от механического и химического воздействий.

2. Контролируемый транспорт метаболитов и ионов через поры и посредством переносчиков определяет внутреннюю среду, что существенно для гомеостаза, т.е. поддержания постоянной концентрации метаболитов и неорганических ионов, и других физиологических параметров.

3. Восприятие внеклеточных сигналов и их передача внутрь клетки, а также инициация сигналов.

4. Ферментативный катализ. В мембранах локализованы наиболее важные реакции энергетического обмена, такие, как окислительное фосфорилирование.

5. Контактное взаимодействие с межклеточным матриксом и взаимодействие с другими клетками при образовании тканей.

6. Заякоривание цитоскелета, обеспечивающее поддержание формы клеток и органелл и клеточной подвижности.

 

 

7.

8.

Основная функция наружной клеточной мембраны – сохранение внутренней среды клетки. При участии плазматической мембраны происходит узнавание и агрегация, как соседних клеток, так и клеток с компонентами внеклеточного матрикса. Формирование клеточной поверхности, которая способна к узнаванию других клеток, контакту с ними и восприятию разнообразных раздражителей, воздействующих на клетку, обеспечивается, прежде всего, углеводными группами, входящими в состав гликопротеидов клеточной мембраны.

Свойства мембраны

1.Текучесть. В процессе жизнедеятельности мембраны клетки подвергаются значительным изменениям. Этот процесс возможен благодаря подвижности и динамичности молекул, составляющих мембрану. «Дрейф» компонентов в латеральной плоскости мембраны происходит достаточно легко; это наблюдается при группировке рецепторов, фагоцитозе и др. процессах эндоцитоза и экзоцитоза. Переход белков с внешней стороны мембраны на ее внутреннюю сторону («флип–флоп») невозможен, а переход липидов происходит крайне редко. Для «перескока» липидов и их переноса из одного слоя мембраны в другой необходимы специальные белки транслокаторы. Холестерин может легко переходить с однго слоя мембраны на другой, а незаряженные липиды могут проходить через мембрану.

2. Асимметрия. Все мембраны клетки имеют асимметричную организацию, для поддержания которой существуют специальные механизмы. Так фосфолипид фосфатидилсерин, несущий отрицательный заряд, концентрируется в основном на внутреннем слое мембраны, а гликолипиды (ганглиозиды, цереброзиды) – исключительно в наружном слое мембраны.

3. Полярность. Внутренняя поверхность мембраны (обращенная к цитоплазме) в нормальных условиях жизнедеятельности всегда заряжена отрицательно по отношению к внешней среде. Разность потенциалов между внутренней и внешней поверхностями составляет для разных типов клеток от 4 до 100 милливольт (мВ). Для нервных клеток эта величина, которую называют потенциалом покоя, равна примерно 70-75мВ. Раздражители или факторы, которые гиперполяризуют мембрану, обладают положительным биологическим действием. Существует множество факторов, при воздействии которых на клетку происходит снижение мембранного потенциала ниже уровня потенциала покоя. Следует отметить, что все наркотики и, в частности, алкоголь в первой стадии вызывают развитие гиперполяризационных процессов в нервной системе (возможно, в этом кроется одна из причин наркотической и алкогольной зависимости), а затем наступает длительная деполяризация, истощение и разрушение нервных клеток. Организм должен избегать раздражителей, постоянно деполяризующих мембраны его клеток, поскольку это грозит гибелью.

4. Избирательная проницаемость.Это свойство обеспечивает обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют трансмембранным транспортом (переносом) веществ; он лежит в основе процессов поддержания клеточного гомеостаза, оптимального содержания в клетке ионов, воды, ферментов и субстратов. Трансмембранный перенос мелких молекул осуществляется путем диффузии и путем активного транспорта. Трансмембранный перенос крупных молекул происходит в форме эндоцитоза, экзоцитоза и трансцитоза.


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.