Физиологическое действие инфразвука — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Физиологическое действие инфразвука

2018-01-04 351
Физиологическое действие инфразвука 0.00 из 5.00 0 оценок
Заказать работу

Источники инфразвука

Естественные источники

Возникает при землетрясениях, во время бурь и ураганов, цунами. При помощи достаточно сильных инфразвуков (более 60 дБ) общаются между собой киты.

Техногенные источники

К основным техногенным источникам инфразвука относится мощное оборудование — станки, котельные, транспорт, подводные и подземные взрывы. Кроме того, инфразвук излучают ветряные электростанции и, в некоторых случаях, вентиляционные шахты.

Распространение инфразвука

Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Поскольку инфразвук слабо поглощается, он распространяется на большие расстояния и может служить предвестником бурь, ураганов, цунами. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.

Физиологическое действие инфразвука

Органы человека, как и любое физическое тело имеют собственную резонансную частоту. Под воздействием звука с этой частотой они могут испытывать внутреннее изменение структуры, вплоть до потери собственной работоспособности. Предполагается, что на этом принципе может быть создано инфразвуковое оружие. Также при совпадении воздействующего звука с ритмами мозга, такими как альфа-ритм, бета-ритм, гамма-ритм, дельта-ритм, тета-ритм, каппа-ритм, мю-ритм, сигма-ритм и др., может возникнуть нарушение активности церебральных механизмов мозга.

Все случаи контакта человека и инфразвука можно поделить на две большие группы. Контакты в пространстве, не ограниченном жесткими стенками и контакты в помещениях, то есть в пространстве, ограниченном жесткими стенками. Таким образом, с точки зрения акустики, это контакты с бегущей волной (в первом случае), и контакты в полости резонатора (во втором случае).

Физиологическое действие инфразвука на открытом пространстве

Как пример, рассмотрим вредную для человеческого организма стоячую волну частотой в 7 Гц, названную академиком Шулейкиным голос моря [2], образующуюся по принципу, схожему с образованием стоячей волны в трубе, у которой один конец открыт, а другой закрыт. Для такой трубы, открытой с одного конца основная частота f = v/4L, где v - скорость звука в среде, L – длина трубы. Таким образом, опасный для человека инфразвук может образовываться в море с глубиной в h=v/4f+k*v/f (k=0,1,2,3...) и ровным донным рельефом, что соответствует глубинам около 50+200*k метров, в зависимости от солёности и температуры воды.

Предельно допустимые нормы постоянного магнитного поля (ПМП)

Постоянные магнитные поля создают различные промышленные установки и некоторые медицинские аппараты – промышленные установки для электролиза, медицинские компьютерные томографы и т. д.

Оценка и нормирование постоянных магнитных полей осуществляется по уровню магнитного поля – дифференцированно и в зависимости от времени его воздействия на работника за смену.

Уровень постоянного магнитного поля оценивается в единицах напряженности магнитного поля (Н) в А/м (Ампер/метр) или в единицах магнитной индукции (В) в мТл (миллитесла).

 

Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Длительное воздействие ультрафиолетового излучения может способствовать развитию меланомы и преждевременному старению.

Действие на сетчатку глаза

Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки).

Защита глаз

· Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.

· Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).

· Фильтры для ультрафиолетовых лучей бывают твердыми, жидкими и газообразными. Простые стекла поглощают ультрафиолетовые лучи, начиная с 408 нм. Специальные сорта стекол прозрачны до 300—230 нм, кварц прозрачен до 214 нм, флюорит — до 120 нм. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива и приходится применять отражательную оптику — вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.

50Лазерное излучение (действие на вещество). Высокая мощность Л. и. в сочетании с высокой направленностью позволяет получать с помощью фокусировки световые потоки огромной интенсивности. Наибольшие мощности излучения получены с помощью твердотельных лазеров на стекле с примесью Nd с длиной волны излучения l = 1,06 мкм и в газовых CO2 — лазерах с l = 10,6 мкм (см. табл.).

         
         

Особенности Л. и. привели к открытию целого ряда новых физических явлений, круг которых быстро расширяется по мере увеличения мощности лазеров.

Развитое испарение металлов. При воздействии на металлы Л. и. (например, импульсов неодимового лазера, длительностью несколько мсек) с плотностью потока излучения 106—108 вт/см2 металл в зоне облучения разрушается и на поверхности мишени возникает характерный кратер. Вблизи мишени наблюдается яркое свечение плазменного факела, представляющего собой движущийся пар, нагретый и ионизированный Л. и. Реактивное давление пара, выбрасываемого с поверхности металла, сообщает мишени импульс отдачи (рис. 1).

Испарение происходит с поверхности тонкого слоя жидкого металла, нагретого до температуры в несколько тыс. градусов. Температура слоя определяется равенством поглощённой энергии и потерь на охлаждение, связанное с испарением. Роль теплопроводности в охлаждении слоя при этом несущественна. В отличие от обычного испарения, такой процесс называется развитым испарением.

Давление в слое определяется силой отдачи пара и в случае сформировавшегося газодинамического течения пара от мишени составляет 1/2 давления насыщенного пара при температуре поверхности. Т. о., жидкий слой является перегретым, его состояние метастабильным. Это позволяет исследовать условия предельного перегрева металлов, при достижении которых происходит бурное объёмное вскипание жидкости. При нагреве до температуры, близкой к критической, в жидком слое металла может происходить скачкообразное уменьшение электропроводности и он приобретает свойства диэлектрика. При этом наблюдается скачкообразное уменьшение коэффициента отражения света.

Облучение твёрдых мишеней. При облучении практически всех твёрдых мишеней миллисекундными импульсами Л. и. с плотностью потока излучения ~ 107—109 вт/см2 в потоке пара от испаряющеися мишени, как и в предыдущем случае, образуется плазма. Температура плазмы 104—105 К. Таким методом возможно получение значительного количества химически чистой плотной низкотемпературной плазмы для заполнения магнитных ловушек и для разного рода технологических целей. Испарение твёрдых мишеней под действием Л. и. широко используется в технике (см. Лазерная технология).

При фокусировке на твёрдую мишень наносекундных лазерных импульсов с плотностью потока излучения 1012—1014 вт/см2 поглощающий слой вещества разогревается так сильно, что сразу превращается в плазму. В этом случае уже нельзя говорить об испарении мишени, границе раздела фаз и т.п. Энергия Л. и. расходуется на нагревание плазмы и продвижение фронта разрушения и ионизации в глубь мишени. Температура плазмы оказывается столь высокой, что в ней образуются многозарядные ионы, в частности Са16+ и др. (рис. 2). Образование ионов такой высокой кратности ионизации до недавнего времени наблюдалось только в излучении солнечной короны. Образование ионов с почти ободранной электронной оболочкой интересно также с точки зрения возможности осуществления в ускорителях многозарядных ионов ядерных реакций на тяжёлых ядрах.

Лазерная искра (оптический пробой газа). При фокусировке в воздухе при атмосферном давлении лазерного луча с плотностью потока излучения ~ 1011 вт/см2 в фокусе линзы наблюдается яркая световая вспышка (рис. 3) и сильный звук. Это явление называется лазерной искрой. Длительность вспышки в 10 и более раз превосходит длительность лазерного импульса (30 нсек). Образование лазерной искры можно представить себе состоящим из 2 стадий: 1) образование в фокусе линзы первичной (затравочной) плазмы, обеспечивающей сильное поглощение Л. и.; 2) распространение плазмы вдоль луча в области фокуса. Механизм образования затравочной плазмы аналогичен высокочастотному пробою газов. Отсюда термин — оптический пробой газа. Для пикосекундных импульсов Л. и. (I~ 1013—1014 вт/см2) образование затравочной плазмы обусловлено также многофотонной ионизацией (см. Многофотонные процессы). Нагревание затравочной плазмы Л. и. и её распространение вдоль луча (навстречу лучу) обусловлено несколькими процессами, одним из которых является распространение от затравочной плазмы сильной ударной волны. Ударная волна за своим фронтом нагревает и ионизирует газ, что, в свою очередь, приводит к поглощению Л. и., т. е. к поддержанию самой ударной волны и плазмы вдоль луча (световая детонация). В др. направлениях ударная волна быстро затухает.

Т. к. время жизни плазмы, образованной Л. и., значительно превышает длительность лазерного импульса, то на больших расстояниях от фокуса лазерную искру можно рассматривать как точечный взрыв (почти мгновенное выделение энергии в точке). Это объясняет, в частности, высокую интенсивность звука. Лазерная искра исследована для ряда газов при различных давлениях, разных условиях фокусировки, разных длинах волн Л. и. при длительностях импульсов от 10-6 до 10-11 сек.

Лазерную искру можно наблюдать и при значительно меньших интенсивностях, если затравочная поглощающая плазма в фокусе линзы создаётся заранее. Например, в воздухе при атмосферном давлении лазерная искра развивается из электроразрядной затравочной плазмы, при интенсивности Л. и. ~ 107 вт/см2, Л. и. "подхватывает" электроразрядную плазму и за время лазерного импульса свечение распространяется вдоль каустической поверхности линзы. При относительно малой интенсивности Л. и. распространение плазмы обусловлено теплопроводностью, в результате чего скорость распространения плазмы — дозвуковая. Этот процесс аналогичен медленному горению, отсюда термин "лазерная искра в режиме медленного горения".

Стационарное поддержание лазерной искры было осуществлено в различных газах с помощью непрерывного СО2-лазера мощностью в несколько сотен вт. Затравочная плазма создавалась импульсным СО2-лазером.

Термоядерный синтез. С помощью Л. и. возможно осуществление реакции термоядерного синтеза. Для этого необходимо образование чрезвычайно плотной и горячей плазмы с температурой, в случае синтеза ядер дейтерия, ~ 108 К. Для того чтобы энерговыделение в результате реакции превышало энергию, вложенную в плазму при её нагреве, необходимо выполнение условия:

nt ³ 1014 см-3сек,

где n — плотность плазмы, t — время её существования. Для коротких лазерных импульсов это условие выполняется при очень высоких плотностях плазмы. При этом давление в плазме столь велико, что её магнитное удержание практически невозможно. Возникающая вблизи фокуса плазма разлетается со скоростью ~ 108 см/сек. Поэтому t — время, за которое сгусток плотной плазмы ещё не успевает существенно изменить свой объём (время инерционного удержания плазмы). Для осуществления термоядерного синтеза длительность лазерного импульса tл, очевидно, не должна превышать t. Минимальная энергия лазерного импульса E при плотности плазмы n = 5×1022 см-3 (плотность жидкого водорода), времени удержания t = 2×10-9 сек и линейных размерах плазменного сгустка 0,4 см должна составлять: E = 6×105 дж. Однако эффективное поглощение света плазмой в условиях её инерционного удержания и выполнение условия nt ~ 10-14 имеет место лишь для определённых длин волн l:

lкр > l > (lкр/ ),

где lкр — критическая длина волны для плазмы с плотностью n (см. Плазма). При n = 5×1022 см-3 l лежит в ультрафиолетовой области спектра, для которой пока не существует мощных лазеров. В то же время при l = 1 мкм (неодимовый лазер) даже для n = 1021 см-3, соответствующей lкр, получается трудно осуществимое значение минимальной энергии E = 109 дж. Трудность ввода энергии Л. и. видимого и инфракрасного диапазонов в плотную плазму является фундаментальной. Существуют различные идеи относительно её преодоления, среди которых представляет интерес получение сверхплотной горячей плазмы в результате адиабатического сжатия сферической дейтериевой мишени реактивным давлением плазмы, выбрасываемой с поверхности мишени под действием Л. и.

Впервые высокотемпературный нагрев плазмы Л. и. был осуществлен при оптическом пробое воздуха. В 1966—67 при плотности потока Л. и. ~ 1012—1013 вт/см2 было зафиксировано рентгеновское излучение от плазмы лазерной искры, имеющей температуру ~ 1—3×106 К. В 1971 при облучении твёрдой сферической водородосодержащей мишени Л. и. с плотностью потока до 1016 вт/см2 была получена плазма с температурой (измеренной по рентгеновскому излучению) 107 К. При этом наблюдался выход 106 нейтронов за импульс. Полученные результаты, а также имеющиеся возможности увеличения энергии и мощности лазеров создают перспективу получения с помощью Л. и. управляемой термоядерной реакции.

Химия резонансно-возбуждённых молекул. Под действием монохроматического Л. и. возможно селективное воздействие на химические связи молекул, что позволяет избирательно вмешиваться в химические реакции синтеза, диссоциации и процессы катализа. Многие химические реакции сводятся к разрушению одних химических связей в молекулах и созданию других. Связи между атомами обусловливают колебательный спектр молекулы. Частоты линий этого спектра зависят от энергии связи и массы атомов. Под действием монохроматического Л. и. резонансной частоты отдельная связь может быть "раскачана". Такая связь легко может быть разрушена и заменена другой. Поэтому колебательно возбуждённые молекулы оказываются химически более активными (рис. 4).

С помощью Л. и. можно осуществить разделение молекул с разным изотопным составом. Эта возможность связана с зависимостью частоты колебаний атомов, составляющих молекулу, от массы атомов. Монохроматичность и высокая мощность Л. и. позволяют избирательно возбуждать на преддиссоциационный уровень молекулы только одного изотопного состава и получать в продуктах диссоциации химические соединения моноизотопического состава или сам изотоп. Т. к. число диссоциированных молекул данного изотопного состава равно числу поглощённых квантов, то эффективность метода по сравнению с другими методами изотопов разделения может быть высокой.

Перечисленные эффекты не исчерпывают всех физических явлений, обусловленных действием Л. и. на вещество. Прозрачные диэлектрики разрушаются под действием Л. и. При облучении некоторых ферромагнитных плёнок наблюдаются локальные изменения их магнитного состояния, что может быть использовано при создании быстродействующих переключающих устройств и элементов памяти ЭВМ. При фокусировке Л. и. внутри жидкости имеет место так называемый светогидравлический эффект, позволяющий создавать в жидкости высокие импульсные давления. Наконец, при плотностях потока излучения ~ 1018—1019 вт/см2 возможно ускорение электронов до релятивистских энергий. С этим связан целый ряд новых эффектов, например рождение электронно-позитронных пар.

Лит.: Райзер Ю. П., Пробой и нагревание газов под действием лазерного луча, "Успехи физических наук", 1965, т. 87, в. 1, с. 29; Квантовая электроника. Маленькая энциклопедия, М., 1969; Действия излучения большой мощности на металлы, под ред. А. М. Бонч-Бруевича и М. А. Ельяшевича, М., 1970; Басов Н. Г., Крохин О. Н., Крюков П. Г., Лазеры и управляемая термоядерная реакция, "Природа", 1971, № 1; Действие лазерного излучения. Сб. ст., пер. с англ., под ред. Ю. П. Райзера, М., 1968; Басов Н. Г. [и др.], Лазеры в химии, "Природа", 1973, № 5.

В. Б. Федоров, С. Л. Шапиро.

Лазерное излучение в биологии. Почти одновременно с созданием первых лазеров началось изучение биологического действия Л. и. Некоторые возможные биолого-медицинские аспекты его использования были намечены Ч. Таунсом (1962). В последующем оказалось, что возможная сфера применения Л. и. шире. Биолого-медицинские эффекты Л. и. связаны не только с высокой плотностью потока излучения и возможностью фокусировки луча на самых малых площадях, но, по-видимому, и с др. его характеристиками (монохроматичностью, длиной волны, когерентностью, степенью поляризации), а также с режимом излучения. Один из важных вопросов при использовании Л. и. в биологии и медицине — дозиметрия Л. и. Определение энергии, поглощённой единицей массы биообъекта, связано с большими трудностями. Различные ткани неодинаково поглощают и отражают Л. и. Кроме того, Л. и. в разных областях спектра оказывает не одинаковое, а подчас и антагонистическое действие на биообъект. Поэтому и невозможно ввести при оценке эффекта Л. и. коэффициент качества. Характер эффекта Л. и. определяется прежде всего его интенсивностью, или плотностью потока излучения. В случае импульсных излучателей важны также длительность импульсов и частота их следования. Из-за избирательности поглощения Л. и. биологическая эффективность может не соответствовать энергетическим характеристикам Л. и. Условно различают термические и нетермические эффекты Л. и.; переход от нетермических к термическим эффектам лежит в диапазоне 0,5—1 вт/см2. При плотностях потока излучения, превышающих указанные, происходит поглощение Л. и. молекулами воды, что приводит к их испарению и последующей коагуляции молекул белка. Наблюдаемые при этом структурные изменения аналогичны результатам обычного термического воздействия. Однако Л. и. обеспечивает строгую локализацию поражения, чему способствует сильная обводнённость биообъекта и поглощение рассеивающейся энергии в пограничных областях, смежных с облучаемой. При импульсных термических воздействиях ввиду очень короткого времени воздействия и быстрого испарения воды наблюдается так называемый взрывной эффект: возникает султан выброса, состоящий из частиц ткани и паров воды; этому сопутствует возникновение ударной волны, воздействующей на организм в целом.

Л. и. с меньшей плотностью потока излучения вызывает в биообъекте изменения, механизм которых не полностью выяснен. Это сдвиг в активности ферментов, структуре пигментов, нуклеиновых кислот и др. важных в биологическом отношении веществ. Нетермические эффекты Л. и. вызывают сложный комплекс вторичных физиологических изменений в организме, чему, возможно, способствуют резонансные явления, протекающие в биосубстрате на молекулярном уровне. Нетермические эффекты Л. и. сопровождаются реакциями со стороны нервной, кровеносной и др. систем организма. Избирательность поглощения Л. и. и возможность фокусирования луча на площадях порядка 1 мкм2 особенно заинтересовали исследователей внутриклеточных структур и процессов, использующих Л. и. в качестве "скальпеля", позволяющего избирательно разрушать ядро, митохондрии или др. органеллы клетки без её гибели. Как при термических, так и при нетермических воздействиях Л. и. наиболее выраженной способностью к его поглощению обладают пигментированные ткани. Прижизненное окрашивание специфическими красителями позволяет разрушать и прозрачные для данного Л. и. структуры. В установках для внутриклеточных воздействий используют Л. и. с длиной волны как видимого спектра, так и ультрафиолетового и инфракрасного диапазонов, в непрерывном и импульсном режимах.

Фотографирование биообъектов в Л. и. с целью получения пространственного изображения клеток и тканей стало возможным с созданием лазерных голографических установок для микрофотографирования. В связи с возможностью концентрации энергии Л. и. на очень малых площадях открылись новые возможности для спектрального ультрамикроанализа отдельных участков клетки, жизнедеятельность которой при этом временно сохраняется. С этой целью коротким импульсом Л. и. вызывают испарение вещества с поверхности исследуемого объекта и в газообразном виде подвергают спектральному анализу. Масса образца при этом не превышает долей мкг.

Установлено, что ряд физиологических изменений происходит в организме животных под действием излучения гелий-неоновых лазеров малой мощности. При этом отмечаются стимуляция кроветворения, регенерация соединительной ткани, сдвиги артериального давления, изменения проводимости нервного волокна и др. Как при непосредственном облучении гелий-неоновыми лазерами растительных тканей, так и при предпосевном облучении семян выявлено стимулирующее влияние Л. и. на ряд биохимических процессов, рост и развитие растений.

Н. Н. Шуйский.

Лазерное излучение в медицине. Медицинское применение Л. и. обусловлено как термическими, так и нетермическими эффектами. В хирургии Л. и. используют в качестве "светового скальпеля". Его преимущества — стерильность и бескровность операции, а также возможность варьирования ширины разреза. Бескровность операции связана с коагуляцией белковых молекул и закупоркой сосудов по ходу луча. Этот эффект отмечается даже при операциях на таких органах, как печень, селезёнка, почки и др. По мнению ряда исследователей, послеоперационное заживление при лазерной хирургии идёт скорее, чем после применения электрокоагуляторов. К недостаткам лазерной хирургии следует отнести некоторую ограниченность движений хирурга в операционном поле даже при использовании светопроводов различной конструкции. В качестве "светового скальпеля" наиболее широко применяют СО2-лазеры с длиной волны 10 590 и мощностью от нескольких вт до нескольких десятков вт.

В офтальмологии с помощью лазерного луча лечат отслоение сетчатки, разрушают внутриглазные опухоли, формируют зрачок. На основе рубинового лазера сконструирован офтальмокоагулятор.

При использовании Л. и. в онкологии для удаления поверхностных опухолей (до глубины 3—4 см) чаще применяют импульсные лазеры или лазеры на стекле с примесью Nd с мощностью импульса до 1500 вт. Разрушение опухоли происходит почти мгновенно и сопровождается интенсивным парообразованием и выбросом ткани из области облучения в виде султана. Чтобы предупредить разбрасывание злокачественных клеток в результате "взрывного" эффекта, применяют воздушные отсосы. Операции с применением Л. и. обеспечивают хороший косметический эффект. Перспективы использования лазерного "скальпеля" в нейрохирургии связаны с операциями на обнажённом мозге.

Терапия Л. и. основана преимущественно на нетермических эффектах и представляет собой светотерапию с использованием в качестве источников монохроматического излучения гелий-неоновых лазеров с длиной волны 6328 Терапевтическое воздействие на организм осуществляется Л. и. с плотностью облучения в несколько мвт/см2, что полностью исключает возможность проявления теплового эффекта. На пораженный орган или участок тела воздействуют как местно, так и через соответствующие рефлексогенные зоны и точки (см. Иглотерапия). Л. и. применяют при лечении длительно незаживающих язв и ран; изучается возможность его применения и при др. заболеваниях (ревматоидный полиартрит, бронхиальная астма, некоторые гинекологические заболевания и т.д.). Соединение лазера с волоконной оптикой позволяет резко расширить возможности его применения в медицине. По гибкому светопроводу Л. и. достигает полостей и органов, что позволяет провести голографическое исследование (см. Голография), а при необходимости и облучение пораженного участка. Исследуется возможность просвечивания и фотографирования с помощью Л. и. структуры зубов, состояния сосудов и др. тканей.

Работа с Л. и. требует строгого соблюдения соответствующих правил техники безопасности. Прежде всего необходима защита глаз. Эффективны, например, теневые защитные устройства. Следует оберегать от поражения Л. и. кожные покровы, особенно пигментированные участки. Для защиты от поражения отражённым Л. и. с возможного пути луча удаляют блестящие (зеркальные) поверхности. Предположения о возможности возникновения ионизирующего излучения при работе высокоинтенсивных лазеров не подтвердились.

В. А. Думчев, Н. Н. Шуйский.

Лит.: Файн С., Клейн Э., Биологическое действие излучения лазера, пер. с англ., М., 1968; Лазеры в биологии и медицине, К., 1969; Гамалея Н. Ф., Лазеры в эксперименте и клинике, М., 1972; Некоторые вопросы биодинамики и биоэлектроники организма в норме и патологии, биостимуляция лазерным излучением. (Материалы Республиканской конференции 11—13 мая 1972 г.), А.-А., 1972.

51,52,53,54 Электри́ческий ток — упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Электрический ток широко используется в энергетике для передачи энергии на расстоянии.

В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии.

Арактеристики

  Стиль этого раздела неэнциклопедичен или нарушает нормы русского языка. Следует исправить раздел согласно стилистическим правилам Википедии.  

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 с электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм.[1] Несмотря на это, скорость распространения собственно электрического тока равна скорости света, то есть скорости распространения фронта электромагнитной волны.

Различают переменный (англ. alternating current, AC) и постоянный (англ. direct current, DC) токи.

· Постоянный ток — ток, направление и величина которого слабо меняется во времени.

· Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Методы защиты

Методами защиты является ряд мероприятий по снижению вероятности до нуля получения травм и/или повреждений при использовании электрооборудования.

Проектирование

Проектирование осуществляется лицом, обладающим необходимой на проектировку электросистем документацией (компетентностью) или же квалифицированным лицом под руководством компетентного лица. При проектировании учитываются все возможные риски при использовании электроэнергии и применяются методы избежания опасностей. При проектировании всегда исходят из самых худших условий эксплуатации с учётом 100 % вероятности всех рисков. Перед сдачей проекта в эксплуатацию, взависмости от степени опасности проектируемого объекта, он должен пройти согласование в соответствующих инстанциях.

Заземление

При проектировании одним из важных элементов является доведение разности потенциалов между различными металлическими частями до безопасного для человека и животных значения. Для этого используется заземление и выравнивание потенциалов: все открытые металлические части электрически соединяются на главной шине заземления, таким образом разность потенциалов между ними не должна представлять угрозу для человека или животных при касании между двумя частями металлоконструкций.

Пожарная безопасность

При проведении электроработ

При проведении электроработ рассматривается обеспечение недоступности к токоведущим частям (как во время работ, так и после) для сведения к минимуму рисков или вовсе исключение опасности прикосновения к токоведущим частям электрооборудования. Это достигается посредством ограждения и расположения токоведущих частей на недоступной высоте или в недоступном месте. Ограждения применяют сплошные и сетчатые с размером ячейки сетки 25×25 мм. Сплошные ограждения в виде кожухов и крышек применяются в электроустановках до 1000 В.

Ответственность

· наличие юридически-ответственного за электроработы лица (производителя электроработ), обладающего необходимой документацией (компетентностью) на проведение электроработ данного вида

· наличие у исполнителей электроработ достаточной квалификации для безопасного исполнения электроработ

· обладание необходимыми инструментами и прочим оборудованием для безопасного проведения электроработ

Снятие напряжения

 

 

Во избежание создания опасных ситуаций, перед началом работ снимается напряжение на задействованном участке электроцепи и коммутационный аппарат помечается соответствующими предупреждающими знаками. В промышленных электроустановках используются заземляющие ножи, закорачивающие фазные провода на стороне потребителя при снятии напряжения на землю: в случае ошибочного возвращения напряжения произойдёт короткое замыкание и срабатывания предохранителя, работающие в электроустановке люди при этом не пострадают. При электроработах в жилом хозяйстве чаще всего ограничиваются отключением предохранителя — таким образом случайный возврат напряжения поставит под угрозу жизни работающих в электроустановке людей. Для воздушных линий используется переносное заземление.

Инструменты

При проведении работ в электроустановке допускается использование только изолированных инструментов, имеющих изолированную рукоятку на отведённое напряжение. Во избежание поражения электрическим током или ожогов из-за короткого замыкания, строго запрещается работать в электроустановке слесарными инструментами.

Работа под напряжением

Работа под напряжением представляет собой риски:

· поражение электрическим током ввиду большой площади открытых проводников

· получения ожогов из-за возможности создания случайного короткого замыкания

До 400 вольт

При невозможности снять напряжение, рабочие используют спецоборудование: диэлектрические перчатки и защиту лица от ожогов. Перед началом работ тщательно взвешиваются возможные риски и ликвидируются источники потенциальной опасности для самих рабочих.

«Одна рука»

Допускается только при напряжении свыше 35 киловольт, когда провода находятся на достаточно большом друг от друга расстоянии и тело человека физически не может оказаться между проводами. При проведении таких работ работающее лицо «заземляется» на тот провод, над которым он осуществляет работу (разность потенциалов между проводом и человеком должна быть ~0 вольт), при этом исключая возможность касания земли.

Установка

Главной целью установки является сведение к минимуму рисков, связанных с использованием электроэнергии. Например, все аппараты контроля и управления должны быть скрыты в панель, доступ к находящимся под опасным напряжением проводящим частям должен быть надёжно закрыт от случайного прикосновения, степень защиты электрооборудования должна соответствовать среде эксплуатации.

Окончание работ

По окончании работ, место работы приводится в порядок, мусор утилизируется и перед возвращением напряжения работа принимается ответственным за проведение электроработ лицом (производитель электроработ) или же обладающим соответствующими полномочиями инспектором органов технического надзора. На момент возвращения напряжения, электроустановка должна быть полностью пригодна для использования: все рабочие должны покинуть место проведения электроработ (ввиду завершённости) и проводящие части должны быть тщательно закрыты от посторонних.

Электрическая изоляция

Слой диэлектрика, которым покрывают поверхность токоведущих элементов, или конструкция из непроводящего материала, с помощью которой токоведущие части отделяются от остальных частей электрооборудования. Выделяют следующие виды изоляции:

· рабочая — электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током;

· дополнительная — электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции;

· двойная — изоляция, состоящая из рабочей и дополнительной изоляции;

· усиленная — улучшенная рабочая изоляция, которая обеспечивает такую же защиту от поражения электрическим током, как и двойная изоляция;

· сопротивление изоляции должно быть не менее 0.5 МОм.

Каждый используемый в быту э


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.066 с.