Существует классификация гормонов по вырабатывающим их железам (гипофизарные, кортикостероидные, половые и др.). — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Существует классификация гормонов по вырабатывающим их железам (гипофизарные, кортикостероидные, половые и др.).

2018-01-04 1518
Существует классификация гормонов по вырабатывающим их железам (гипофизарные, кортикостероидные, половые и др.). 0.00 из 5.00 0 оценок
Заказать работу

Синтез и секреция гормонов регулируются нервной системой либо непосредственно, либо через выделение других гормонов или гуморальных факторов. Роль «эндокринного мозга», регулирующего деятельность периферических желез внутренней секреции, в настоящее время отводят особой «гипофизиотропной» области гипоталамуса. Именно здесь многочисленные и разнообразные нервные сигналы чаще всего трансформируются в гуморальные. В гипоталамусе концентрируются нейроны, выделяющие в ответ на приходящие извне импульсы или нейромедиаторы особые рилизинг-гормоны в кровь портальной системы гипофиза. Эти рилизинг-гормоны действуют на специфические клеточные популяции передней доли гипофиза, стимулируя или тормозя выделение гипофизарных гормонов.

Важнейшую роль в регуляции гормональной секреции играет механизм обратной связи, заключающийся в том, что при избыточном содержании данного гормона в крови тормозится секреция его физиологических стимуляторов, а при его недостатке она усиливается. Частным проявлением механизма обратной связи является регуляция выделения гормона изменением самого систематизируемого параметра. Например, повышение уровня сахара в крови усиливает секрецию инсулина, который снижает содержание сахара. Выделение многих гормонов подчиняется определенным ритмам (суточным, сезонным, возрастным) или связано с некоторыми физиологическими состояниями (беременность, лактация, адаптация к новым условиям среды).

Механизм действия гормонов зависит от того, могут ли они проникнуть через плазматическую мембрану. Так, гормоны белковой, пептидной природы, а также катехоламины (т. е. гидрофильные гор­моны) не могут проходить через мембрану; они вступают во взаимо­действие с рецепторами, расположенными на ее поверхности, и тем самым генерируют сигнал, который регулирует различные клеточные функции (обычно путем изменения активности ферментов (мембран­ный механизм циторецепции)). Воздействие гормонов на внутрикле­точные процессы обмена при этом опосредуется вторичными посред­никами (мессенджерами).

Липофильные гормоны (стероидные и тиреоидные гормоны) диф­фундируют через плазматическую мембрану и в цитоплазме связыва­ются со специфическими белками-рецепторами. Основной эффект этих гормонов проявляется на уровне транскрипции генов и синтеза соответствующих мРНК. В результате происходит изменение содер­жания определенных белков, что сказывается на активности тех или иных процессов метаболизма (цитозольный механизм циторе-цепции).

Однако разграничение гормонов на группы с мембранным (гидро­фильные гормоны) и цитозолъным механизмами циторецепции (ли-пофильные гормоны) не является абсолютным. В 80-х гг. XX в. было установлено, что многие белковые гормоны после их взаимодействия с рецепторами на плазматической мембране подвергаются эндоцитозу и оказываются внутри клетки, а далее могут транспортироваться в ядро. Это позволяет им осуществлять не только срочную гормональную ре­гуляцию (иметь «раннюю волну» эффектов), но и хроническую регу­ляцию (иметь «позднюю волну» эффектов) на уровне транскрипции генов.

Доказан внутриядерный перенос инсулина, люлиберина, хориони-ческого гонадотропина и других белковых гормонов. В «позднюю волну» эффектов белковых гормонов входят, в частности, такие эф­фекты, как индукция синтеза ключевых белков, морфогенетическое действие гормонов, регуляция пролиферации клеток. У стероидов и тиреоидных гормонов также имеется не только внутриклеточный на­бор отдаленных эффектов, но и ранние эффекты, связанные с их действием на мембранные рецепторы и мобилизацией внутриклеточ­ных посредников того же типа, что и у белковых гормонов. Так, на­пример, тиреоидиые гормоны через поверхностные рецепторы оказы­вают активирующее влияние на захват клетками аминокислот и глю­козы.

Существует классификация по месту синтеза гормонов: это гормоны гипоталамуса, гипофиза, щитовидной железы, паращитовид-ных желез, поджелудочной железы, надпочечников, половых желез, эпи­физа, тимуса.

20)Основные принципы действия системных гормонов на метаболизм: особенности образования и секреции, транспорта в крови и межклеточной жидкости, дистантность действия, клетки- мишени, характер в/д с рецепторами, уровни регулирующего влияния на тканевые ферменты.

Гормоны – биологически активные соединения, выделяемые железами внутренней секреции в кровь или лимфу и оказывающие влияние на метаболизм клетки. Гормоны осуществляют своё биологическое действие, образуя комплекс со специфическими молекулами – рецепторами. Клетки, содержащие рецепторы к определённому гормону, называются клетками-мишенями для этого гормона. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматической мембране клеток-мишеней; другие гормоны взаимодействуют с рецепторами, локализованными в цитоплазме и ядре клеток-мишеней. В организме существует несколько уровней регуляции гомеостаза, которые тесно взаимосвязаны и функционируют как единая система.

1. Сигналы из внешней и внутренней среды поступают в центральную нервную систему (высший уровень регуляции, осуществляет контроль в пределах целого организма). Эти сигналы трансформируются в нервные импульсы, попадающие на нейросекреторные клетки гипоталамуса. В гипоталамусе образуются:

1. либерины (или рилизинг-факторы), стимулирующие секрецию гормонов гипофиза;

2. статины – вещества, угнетающие секрецию этих гормонов.

Либерины и статины по системе портальных капилляров достигают гипофиза, где вырабатываются тропные гормоны. Тропные гормоны действуют на периферические ткани-мишени и стимулируют(знак “+”) образование и секрецию гормонов периферических эндокринных желёз. Гормоны периферических желёз угнетают (знак “–”) образование тропных гормонов, действуя на клетки гипофиза или нейросекреторные клетки гипоталамуса. Кроме того, гормоны, действуя на обмен веществ в тканях, вызывают изменения содержания метаболитов в крови, а те, в свою очередь, влияют (по механизму обратной связи) на секрецию гормонов в периферических железах (или непосредственно, или через гипофиз и гипоталамус).

2. Гипоталамус, гипофиз и периферические железы образуют средний уровень регуляции гомеостаза, обеспечивающий контроль нескольких метаболических путей в пределах одного органа, или ткани, или разных органов.

Гормоны эндокринных желёз могут влиять на обмен веществ:

путём изменения количества ферментного белка;

путём химической модификации ферментного белка с изменением его активности, а также

путём изменения скорости транспорта веществ через биологические мембраны.

3. Внутриклеточные механизмы регуляции представляют собой низший уровень регуляции. Сигналами для изменения состояния клетки служат вещества, образующиеся в самих клетках или поступающие в неё.

Молекулярные механизмы действия гормонов в клетках мишенях. Характеристика рецепторов и действия липофильных гормонов. Рецепторы гидрофильных белково-пептидных гормонов G-белки. Вторичные месенджеры: цАМФ и ГМФ, инозитолтрифосфат и диацилглицерол, ионы Са.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

· узнавание гормона;

· преобразование и передачу полученного сигнала в клетку.

Рецепторы липофильных гормонов во многом сходны, т. к. принадлежат к одному семейству белков. Молекула рецепторного белка состоит из нескольких доменов, имеющих различные размеры и выполняющие разные функции. На С-концевом участке полипептидной цепи рецептора находится домен узнавания и связывания гормона. На N-концевом участке находится регуляторный доменотвечающий за связывание с другими белками. Центральная часть рецептора включает домен связывания ДНК. В этом домене содержаться повторяющиеся фрагменты, богатые остатками цистеина. Цистеин может координационно связывать ионы цинка и образовывать цинковые кластеры, называемые еще «цинковыми пальцами».

Связывание гормона влечет за собой конформационную перестройку молекулы рецепторного белка, сопряженного с другими белками, диссоциацию с освобождением от белков-ингибиторов, в частности от белка теплового шока (hsp90), и образование димеров, обладающих повышенным сродством к ДНК (DNA).

Ключевой стадией процесса гормональной регуляции является связывание димеров гормон-рецепторного комплекса с двунитевой ДНК. Комплекс связывается с регуляторными участками генов, которые носят название гормон-респонсивные элементы. Это короткие симметричные фрагменты ДНК, которые выполняют функции усилителей транскрипции. Связывание димеров рецептора с ГРЭ ведет к стимуляции, реже — к ингибированию, транскрипции соседних генов. Так, действие гормона в течении нескольких часов приводит к изменению уровня специфических мРНК ключевых белков клетки. Однако скорость белкового синтеза в клетках это относительно медленный процесс, т.к. требует большого количества энергии и пластического материала. Поэтому такие гормоны не могут осуществлять быстрый контроль процессов метаболизма. Основная их функция сводится к регуляции процессов роста, развития и дифференцировки клеток организма.

Гидрофильные гормоны построены из аминокислот, или являются производными аминокислот. Гидрофильные гормоны не способны проходить через липофильную клеточную мембрану, поэтому действуют на клетки-мишени за счет связывания с рецептором на плазматической мембране.

Различают три типа рецепторов:

1) Рецепторы первого типа – это белки, которые имеют одну трансмембранную цепь. Активный центр этого аллостерического фермента (многие являются тирозиновыми протеинкиназами) расположен на внутренней стороне мембраны. При связывании гормона с рецептором происходит димеризация последнего с одновременной активизацией и фосфорилированием тирозина в рецепторе. С фосфотирозином связывается белок-переносчик сигнала, который передает сигнал внутриклеточным протеинкиназам.

2) Ионные каналы.Это мембранные белки, которые при связывании с лигандами оказываются открытыми для ионов Na+, K+или Cl+. Так действуют нейромедиаторы.

3) Рецепторы третьего типа, сопряжены с ГТФ-связывающими белками. Пептидная цепь этих рецепторов включает семь трансмембранных тяжей. Такие рецепторы передают сигнал с помощью ГТФ-связывающих белков (G-белок) на белки-эффекторы. Функция этих белков заключается в изменении концентрации вторичных мессенджеров

АДЕНИЛАТЦИКЛАЗНАЯ СИСТЕМА.

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Схема аденилатциклазной системы представлена на рисунке:

Как видно из рисунка, белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.

До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.

Комплекс “G-белок-ГТФ” активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.

ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс “GTP-G-белок” ингибирует аденилатциклазу.

Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3',5'-цикло-АМФ до АМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, то есть усиливается действие гормона.

Кроме аденилат-циклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат -это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы “С”, который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30% состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс “Са+2-кальмодулин” становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса “Са+2-кальмодулин” на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

22) Нервно рефлекторный и эндокринный пути регуляции обмена веществ. Гипоталамус- нервный и гуморальный центр регуляции метаболизма. Структура и биологическая роль либеринов и статинов.

Гуморальная регуляция. Некоторые гормоны непосредственно регулируют синтез или распад ферментов и проницаемость клеточных оболочек, изменяя в клетке содержание субстратов, кофакторов и ионный состав.

Нервная регуляция осуществляется различными путями: изменением интенсивности функционирования эндокринных желез; непосредственно активацией ферментов. ЦНС, действуя на клеточные и гуморальные механизмы регуляции, адекватно изменяет трофику клеток.

Роль центра в регуляции обмена веществ и энергии играет гипо­таламус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.

Либерины и статины – рилизинг-гормоны, от концентрации которых зависит деятельность гипоталамуса. Попадая в кровеносное русло человека, либерины и статины начинают распределяться между тканями. Там они продуцируют развитие метаболических процессов на клеточно-мембранном уровне, из-за чего происходят множественные гормональные перестройки. Без либеринов и статинов в организме была бы невозможной регуляторная функция. Либерины и статины – вещества, которые объединены в общую группу рилизинг-факторов. Они являются антагонистами, которые вырабатываются самим организмам. Либерины – стимулируют, а статины – подавляют и выводят гормоны гипофиза из организма.

Известны следующие либерины и статины:

· соматолиберин (стимулирует продукцию гормона роста)

· соматостатин (тормозит продукцию гормона роста)

· гонадолиберин (люлиберин; стимулирует продукцию гонадотропных гормонов - фолликулостимулирующего и лютеинизирующего)

· тиролиберин (стимулирует продукцию тиреотропного гормона)

· кортиколиберин (стимулирует продукцию адренокортикотропного гормона)

· дофамин (пролактостатин; тормозит продукцию пролактина)

· пролактилиберин (стимулирует продукцию пролактина)


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.046 с.