Огневые фугасы и заграждения (преграды) — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Огневые фугасы и заграждения (преграды)

2018-01-07 642
Огневые фугасы и заграждения (преграды) 0.00 из 5.00 0 оценок
Заказать работу

 

Под названием «огневой фугас» понимается сочетание зажигательного вещества (или их смеси) с взрывчатым, устанавливаемым так, что при подрыве последнего (например, тротила) воспламеняется зажигательное вещество, которое чаще всего применяется в жидком виде (например, могут быть использованы обычные огнеметные смеси, самовоспламеняющиеся вещества) и иногда в твердом (фосфор). Взрывчатого вещества берется столько, сколько требуется для того, чтобы выбросить на поверхность земли и поджечь зажигательную смесь, не распыляя ее и не разбрасывая в большом радиусе, а также создать, по возможности, концентрированный огненный факел.

 

 

Напалмовые мины-фугасы: 1 – напалмовая смесь; 2 – фосфорная граната; 3 ~ взрывы тел ь; 4 – детонирующий шнур; 5 – проволочные силки; 6 – электрозапал; 7 – вы- шибной заряд; 8 – источник тока; 9 – снарядная гильза

 

Обычно огневой фугас приводится в действие или автоматически при проходе неприятельских частей через место расположения фугаса (в этом случае он играет роль обычной мины, только огненной), или же при помощи электроподрывной машинки и электрозапалов или детонаторов (в этом случае он играет роль управляемого минного поля).

В ряде случаев зарытый в земле и тщательно замаскированный огневой фугас приводится в действие при помощи упрощенного взрывателя. Снаряженный взрыватель приводит в действие капсюль-воспламенитель или детонатор тотчас после того, как из взрывателя будет выдернута предохранительная чека. В зависимости от схемы монтажа чека упрощенного взрывателя может быть выдернута при прохождении неприятельских солдат над фугасом или вблизи него (например, ногами), она может быть привязана к замаскированным шпагату, веревке, проволоке и т. д. (фугас с сюрпризом).

Огневые фугасы применяются при защите оборонительных рубежей укрепленных районов и т. д. Помимо психологического воздействия на наступающего, горящая масса зажигательной жидкой смеси, падая, осыпает дождем горящих капель обмундирование солдат и создает огневые поражения, действуя одновременно и морально.

Огнеметные фугасы различной конструкции применялись в Первую и Вторую мировые войны. Обычно применяются фугасы емкостью 6-15 л жидкой зажигательной смеси. В больших огневых фугасах количество зажигательного вещества может доходить до 100 кг и более. В качестве зажигательного снаряжения чаще всего применяют фосфор, некоторые его смеси и соединения, огнеметные смеси и смеси легковоспламеняющихся жидкостей.

В качестве горючего в них использовались бензин, керосин, нефть, а также загущенное горючее.

В современных огненных фугасах используются, как правило, напалмовые смеси.

 

 

Стандартный огневой фугас: 1 – провод к запальной (подрывной) машинке; 2 – корпус фугаса; 3 – пробка для заливки; 4 – стакан для запального и рассеивающего заряда; 5 – запальный или рассеивающий заряд; 6 – зажигательное вещество (смесь веществ); 7 – метательный заряд; 8 – электрозапал; 9 – маскировка и уровень земли

 

 

Огневой фугас с сюрпризом: 1 – емкость с зажигательным веществом; 2 – заряд ВВ; 3 – упрощенный взрыватель; 4 – выдергивающаяся предохранительная чека; 5 – уровень земли; 6 – проволока или бичева, выдергивающая чеку при задевании биче вы; 7 – детонатор; 8 – направляющий блок

 

Огнеметные (напалмовые) мины-фугасы получили широкую известность с весны 1951 г., когда они были применены американскими инженерными войсками в Корее. Для устройства противопехотных мин-фугасов железные бочки из- под горючего емкостью 200 л, наполненные напалмом, американцы зарывали в землю на расстоянии 50-100 м от переднего края обороны и маскировали тонким слоем грунта. Напалмовая смесь выбрасывалась и поджигалась взрывом внутри бочки дымовой ручной гранаты, снаряженной белым фосфором и обмотанной несколькими метрами детонирующего шнура. Взрыватель гранаты связывался проволокой с установленными малозаметными препятствиями («проволочными силками»). Взрыв происходил при задевании противником за проволоку.

Иногда под бочку подкладывался вышибной заряд из тротиловых шашек или минометных мин, В этом случае взрыв мог производиться электродетонатором с помощью стандартной подрывной машинки. Взрыв мины-фугаса, сделанной из бочки емкостью 200 л, наносил поражения в радиусе 50-60 м.

Американцы применяли также напалмовые фугасы, изготовленные из использованных гильз или укупорок от крупнокалиберных артиллерийских снарядов. Эти фугасы зарывались в грунт с наклоном в сторону противника. Напалмовая смесь выбрасывалась специальным вышибным зарядом взрывчатого вещества, который подрывался посредством электродетонатора и воспламенялся ручной фосфорной гранатой, находившейся перед открытым концом гильзы или укупорки, Граната взрывалась одновременно с вышибным зарядом.

Для устройства самодельных противопехотных напалмовых мин-фугасов использовались также бочки, банки и гильзы различных размеров.

В дальнейшем американцы стали применять в Корее напалмовые мины заводского изготовления. По сообщению военной прессы, напалмовые мины-фугасы по своему действию значительно превосходят все существующие осколочные противопехотные мины. Американцы утверждают, что взрывом напалмовых мин, установленных на расстоянии 15-40 м одна от другой, создается непреодолимый для пехоты огневой рубеж.

Напалмовые фугасы возможно использовать также в качестве осветительного средства. Одна бочка напалма емкостью 200 л может гореть в течение всей ночи и освещать значительную поверхность. Однако при ветре, дующем в сторону своих войск, применение напалма для освещения местности нецелесообразно; при горении выделяется много черного дыма, оказывающего раздражающее действие на глаза.

Надо сказать, что напалмовые фугасы являются разновидностью огнеметных фугасов аналогичной конструкции, применявшихся в Первую и Вторую мировые войны, правда, в несколько меньших масштабах.

Огневые фугасы могут применяться в одиночном порядке или групповом; в последнем случае они располагаются в шахматном порядке.

 

 

Огневая преграда: а) 1 – узел обороны; 2 – проволочные заграждения; 3 – огневая преграда; б) 1 – узел обороны; 2 – проволочные заграждения; 3 – огневая преграда в виде серии зажигательных бутылок (бутылки замаскированы)

 

Огневые фугасы широко используются на маневрах и учениях войск в качестве имитаторов атомного взрыва. Для этого в землю вкапывается бак с напалмом, под который предварительно укладывается мотками детонирующий шнур. Психологический эффект взрыва обычно превосходит все ожидания: огненный шар, вспышка и «гриб» выглядят совсем как «атомные», только без ударной волны и радиации. Обычно войска, если они не были предупреждены заранее, бывают уверены, что на данных учениях использовались реальные тактические ядерные боеприпасы (отмечены случаи психозов и получение военнослужащими психических травм).

Огневой преградой называется искусственная огневая завеса или препятствие, создаваемые обороняющейся стороной при помощи зажигательных веществ на пути движения неприятеля.

Огневая преграда может быть создана при помощи жидких зажигательных веществ. Обычно она создается перед рубежом обороняющейся стороны и представляет собой площадь известной длины, ширины и глубины, залитую сравнительно легко воспламеняющейся жидкостью, зажигательным веществом (их смесями), причем такими, которые обладают плохой впитываемостью в землю, мало летучи и испаряются с трудом.

В ряде случаев эти вещества могут быть самовоспламеняющимися или воспламеняющимися от удара или трения.

В зависимости от условий обстановки, качества, свойства вещества и его количества, идущего на создание огневой преграды, последняя может воспламеняться принудительно (обороняющейся стороной) или автоматически с появлением в ее пределах наступающей стороны.

В одном случае обороняющаяся сторона воспламеняет, по мере необходимости, пояс огневой защиты (зажигательные вещества) ружейной, ручной зажигательной гранатой, бикфордовым шнуром, электрозапальной машинкой и т. д., а в другом, при проходе наступающей стороны через пояс огневой защиты вследствие нажима или трения сапог движущихся солдат, действия скрытых сюрпризов, огневых фугасов и т. д., вещество пояса огневой защиты вспыхивает, огонь передается по всему ее поясу, и перед наступающей стороной возникает труднопреодолимая огневая завеса, перед которой неприятель в замешательстве останавливается, а обороняющаяся сторона, пользуясь этим, расстреливает его.

Пояс огневой преграды может быть создан другим способом, например размещением перед линией обороны расположенных вблизи друг от друга серий замаскированных жидкостных зажигательных фанат с самовоспламеняющейся жидкостью (зажигательных бутылок). При проходе через такую преграду танки своими гусеницами давят зажигательные бутылки, снаряжение вспыхивает, и огонь передается на танк с теми или иными последствиями.

В Великую Отечественную войну на танкоопасных направлениях наши войска, помимо обычных минных полей, устраивали поля из бутылок с КС. Широко применялись бутылки и в системе противотанковых и противопехотных заграждений, В оборонительных боях под Москвой использовали уже «огневые валы» и «поля». Огыевые валы устраивали из различных горючих материалов и поджигали бутылками «КС». В минных полях зажигательные бутылки располагали в шахматном порядке в сочетании с противотанковыми минами. А для борьбы с пехотой наши бойцы использовали «миноогнефугасы». В ямы, отрытые перед передним краем, укладывалось до 20 бутылок и небольшие заряды ВВ, подрываемые дистанционно. Площадь сплошного поражения такого фугаса составляла в среднем 250 м 2.

Таким образом, огневая преграда в основном играет роль временно труднопреодолимого огневого рубежа и подавляюще действует на наступающую сторону.

 

Огневодные заграждения

 

Одним из самых эффективных видов искусственных инженерных препятствий являются огневодные заграждения, используемые в качестве противодесантной обороны. Военные специалисты рассматривают создание ог- неводных преград в качестве одного из важных элементов оперативного оборудования территории.

Огневодные заграждения образуются путем воспламенения разлитых на поверхности воды горючих жидкостей (нефть, нефтепродукты и т. п.) или смесей (напалм и др.).

Такие заграждения характеризуются высокой температурой горения (›1000°С), свойством налипать на различные поверхности (десантно-высадочные средства), высокой концентрацией окиси углерода, наличием сильных воздушных потоков, образованных вследствие недостатка кислорода и втягивающих переправочно-десантные средства в зону горения. Согласно оценке военных специалистов, минимальная толщина пленки горючей жидкости на воде, обеспечивающая воспламенение, со- ставляет для бензина 0,6мм (расход бензина 0,6 л на 1 м поверхности), для нефти 3 мм (3 л на 1 м 2). Интенсивность горения пленки нефти и нефтепродуктов в среднем около 1 мм/мин. Поданным исследований, наибольший эффект поражения достигается при создании очагов горения на расстоянии друг от друга не более 50 м.

Известны случаи использования зажигательных средств для устройства заграждений на воде в период Второй мировой войны. Так, в конце 1940 г. англичане с целью защиты от высадки немецкого десанта уложили под водой, вблизи некоторых участков побережья, трубы с горючей жидкостью (нефтью). В нужный момент жидкость могла быть выпущена на поверхность и воспламениться. Однако боевой проверки это средство не получило.

Во время обороны Севастополя в 1941-1942 гг. наступавшие немецкие войска были неожиданно остановлены стеной огня горевшей в бетонной канаве жидкости, поступавшей туда по трубам.

Сами немцы использовали огневодные заграждения довольно ограниченно и фактически только в конце войны, когда вермахт вел жестокие оборонительные бои. К тому же этому способствовала географическая ситуация; союзники (как советские, так и англо-американские войска) наступали вдоль морского побережья и поперек направления течения многочисленных рек, последовательно их форсируя. В этих условиях огненные преграды на воде оказались для немцев очень кстати.

В прессе приводились сведения о подготовке армии США к созданию в Западной Европе огневодных заграждений, образуемых путем сброса в воду имеющихся запасов нефти и нефтепродуктов, расположенных вдоль внутренних водных путей. При этом рассматривались следующие способы образования этих заграждений; выпуск горючей жидкости из резервуаров нефтебаз, разрушение нефтепроводов в месте пересечения ими водных преград, подрыв танкеров и эластичных емкостей, служащих для транспортировки нефтепродуктов по водным путям. Для воспламенения разлитой по поверхности воды горючей жидкости предполагается использовать стандартные воспламенители, применяемые войсками армий НАТО в огневых фугасах, баках и авиабомбах, снаряженных напалмом, а также электровоспламенители, ранцевые и танковые огнеметы.

В армиях Запада в последнее время большое внимание уделяется исследованию возможностей применения горючих жидкостей на основе нефтепродуктов. В частности, военные специалисты планируют использовать сырую нефть или другие легковоспламеняющиеся жидкости для устройства так называемых огневодных заграждений, принцип действия которых основан на горении нефтепродуктов, разлитых на поверхности водной преграды (реки, канала и т. п.), которую предстоит преодолеть противнику.

Вопросы, связанные с созданием огневодных заграждений, военные специалисты разрабатывали еще во времена Второй мировой войны. Однако ограниченные запасы нефти и нефтепродуктов не позволили в тот период применить такие заграждения в широких масштабах на Европейском театре войны. В основном этот тип инженерных заграждений использовали (в ограниченных количествах) гитлеровские войска на заключительном этапе войны, когда вермахт вел в основном оборонительные бои, а направление наступления союзников происходило в поперечном направлении относительно русел крупнейших рек, расположенных в зоне боевых действий.

В послевоенный период в странах Западной Европы потребление нефти и нефтепродуктов значительно увеличилось. Росли и их запасы, что позволило по-новому оценить возможности устройства огневодных заграждений на Европейском театре войны.

Почти все нефтеперерабатывающие заводы и значительная часть нефтебаз в Европе размещены по берегам рек и каналов: во Франции 17 из 19 действующих нефтеперерабатывающих заводов, в ФРГ 28 из 30, в Нидерландах – все нефтеперерабатывающие заводы.

Магистральные нефтепроводы, резервуарные парки нефтебаз и наливные суда, по взглядам военных специалистов, могут быть использованы для сброса нефти и нефтепродуктов на водную преграду с целью создания огне-водного заграждения. Не исключена также, по их мнению, возможность применения специальных систем для создания огневодных заграждений на важных в стратегическом отношении водных рубежах.

В зависимости от конкретных условий сброс нефти и нефтепродуктов на водную поверхность предполагается осуществлять двумя основными способами: включением насосного или компрессорного оборудования или подрывом стенок резервуара, трубопровода, танкера и т. п.

По мнению военных специалистов, успешному использованию нефтепроводов для сброса нефти на воду в значительной мере способствует наличие большого количества переходов трубопроводов через водные преграды. Так, трансальпийский нефтепровод на пути Триест- Инголыптадт пересекает 166 водных преград, в том числе такие реки, как Изонцо и Тальяменто в Италии, Гейл, Драва, Зальцах и Инн в Австрии, Изар и Дунай в ФРГ. Почти все переходы этого трубопровода – подводные, заглубленные ниже линии размыва речного дна. Через крупные водные преграды трубы подводного перехода укладываются в специально сооруженных тоннелях. Южноевропейский нефтепровод, например, на участке перехода через р. Дюранс уложен в тоннеле длиной 760 м, высотой 2,4 м и шириной 1,8 м. Нередко встречаются переходы и других типов: по эстакаде или специально сооруженному мосту, в виде самонссущего моста-трубопровода.

По мнению специалистов, подрыв стенок трубопровода на участке перехода через водную преграду дает возможность управлять сбросом нефти и нефтепродуктов на водную поверхность даже при автоматизированной системе управления работой трубопровода, останавливающей насосные станции при возникновении аварийной ситуации. Переход на ручное управление позволяет оператору центрально-диспетчерского пункта осуществлять подачу продукта к месту разрыва трубопровода.

Военные специалисты считают, что сброс на воду нефти или другой легковоспламеняющейся жидкости из береговых резервуаров и танкеров (или наливных барж) в зависимости от принятого способа может быть как неуправляемым (при подрыве), так и управляемым, т. е. осуществляться с помощью табельного или передвижного насосно-компрессорного оборудования.

Изучению процессов растекания нефтепродуктов по поверхности воды и горения пленки разлитой горючей жидкости уделяется большое внимание, особенно в плане борьбы с загрязнением водной поверхности. В этих исследованиях принимают участие и военные специалисты. В опубликованных материалах указывается, что на процесс растекания горючей жидкости по поверхности воды оказывают влияние количество разлитой жидкости и ее физико-химические свойства, скорость течения воды, скорость и направление ветра. В начальный момент времени после сброса на воду горючей жидкости процесс растекания ее происходит довольно интенсивно, так как определяется в основном действием гравитационных сил. В дальнейшем этот процесс замедляется и происходит под преобладающим влиянием сил поверхностного натяжения на границе раздела двух сред: нефтепродукт- воздух и нефтепродукт-вода. Вязкость нефтепродукта весьма незначительно влияет на процесс его растекания по поверхности воды. Ход процесса растекания определяется расчетами. Так, по сообщениям японской печати, при экспериментальной проверке расчетных данных 1000 т нефти, вылитые в море, распространились за 6 ч в радиусе 500 м.

Специалисты считают, что перемещение пленки нефтепродуктов по реке или каналу и их растекание происходит под влиянием поверхностной скорости течения воды. На эти процессы оказывают влияние сила и направление ветра. Исследованиями установлено, что дрейф нефтяных полей происходит со скоростью, составляющей 3-4% от средней скорости ветра в приводном слое. Минимальная толщина пленки колеблется от 6-15 мм для легких нефтепродуктов (бензин, газойль, машинное масло) до 20-25 мм для нефти. Толщина пленки нефти на морской воде, особенно после эмульгирования нефти, достигает 80-90 мм и более. Толщина пленки загущенных нефтепродуктов может быть еще большей.

Поджигание разлитой нефти или другой горючей жидкости планируется производить с помощью фосфорной или натриевой гранаты, электровоспламеняющего устройства, огнемета или другим способом. По расчетам военных специалистов, характер воспламенения пленки зависит от концентрации паров горючей жидкости в приповерхностном слое. При высокой степени концентрации может происходить детонационное воспламенение горючей жидкости. Если концентрация паров горючей жидкости невысока, то распространение фронта пламени по поверхности разлитой жидкости происходит с небольшой скоростью (порядка нескольких десятков сантиметров в секунду). Скорость и направление ветра также оказывают влияние на скорость распространения фронта пламени. Считается, например, что при встречном ветре со скоростью 1,25 м/с огонь практически не распространится по пленке нефти, перемещаемой по реке со скоростью течения воды 0,8 м/с. По мере испарения легких фракций нефти условия воспламенения пленки затрудняются. Поданным некоторых исследований, поджог разлитой нефти становился невозможным уже после 6 ч пребывания ее на поверхности моря. В других случаях нефть легко поджигалась даже на вторые сутки.

На воспламенение горючей жидкости оказывает влияние и толщина ее пленки на поверхности воды. При толщине пленки бензина менее 0,6 мм, а нефти менее 6 мм поджечь их без применения специальных средств (порошков, древесных опилок, стеклянных шариков и т. п.) не удавалось. Время горения зависит от толщины пленки и интенсивности выгорания данного вида горючей жидкости с открытой поверхности. В опытах английских и западногерманских ученых, исследовавших процесс горения сырой нефти, разлитой в прудах, время горения пленки нефти толщиной 20-25 мм составляло немногим более 20 мин. В опытах японских исследователей нефть, вылитая в море в объеме 78 000 м 3, после растекания поджигалась и горела в течение 14 мин. Максимальные высота пламени и теплоизлучение отмечались уже после 3 мин. с момента поджога.

В материалах исследований указывается, что высота пламени при очаговом горении достигает 6 м и более. В зоне сплошного горения пленки на больших площадях (более 4000 м 2) высота пламени часто не превышает 1,5 м, главным образом ввиду затруднения притока кислорода воздуха в зону горения. Температура пламени при горении различных нефтепродуктов достигает 1000-1100°С. Высокая температура пламени обусловливает степень поражения личного состава, находящегося не только в зоне горения, но и на некотором удалении от нее.

Военные специалисты отмечают, что если на расстоянии 100-200 м от зоны сплошного горения возможно поражение верхних дыхательных путей различной степени, то уже на расстоянии 10м обугливается одежда личного состава. Недостаток кислорода (при содержании его в воздухе менее 15%) и высокая концентрация окиси углерода (более 0,5%) не позволяет живой силе противника преодолевать огневодное заграждение в промежутках между отдельными очагами горения. В этих промежутках образуются также мощные потоки воздуха, которые в состоянии «всосать» в зону горения некоторые виды переправочно-десантных средств.

Военные специалисты, помимо поражающих факторов огпеводного заграждения, отмечают большое психологическое воздействие внезапно возникающего на водной поверхности моря огня, приводящего людей в шоковое состояние.

Процесс горения нефти и нефтепродуктов сопровождается образованием сильно коптящего густого облака дыма, поднимающегося на высоту нескольких десятков и даже сотен метров. Ведение наземной разведки, а во многих случаях и разведки с вертолетов через такую дымовую завесу практически исключается. Становится невозможным визуальное прицеливание и применение систем оружия, использующих в системах наведения лазерное или тепловизионное оборудование.

В печати приводятся данные, которые свидетельствуют о подготовке в армиях некоторых государств к использованию огневодпых сооружений в будущих войнах. При этом изучается опыт Израиля, который, после захвата Синайского полуострова, построил специальную систему для создания огневодных заграждений по всей линии Суэцкого канала. Накануне ближневосточной войны 1973 г. (Октябрьская война, она же Война судного дня, она же Война Рамадана) израильтянами на восточном берегу канала была создана так называемая «Линия Барлева» (по фамилии бывшего начальника израильского генерального штаба) – полоса обороны глубиной 10-15 км.

Она состояла из системы опорных пунктов с оборудованными в них позициями и укрытиями для танков, орудий и минометов, а также из развитой системы траншей и ходов сообщения. Опорные пункты, между которыми устанавливались инженерные заграждения, прикрывались комбинированными проволочными минно- взрывными заграждениями. «Линия Барлева» включала также песчаные валы высотой 10-20 м, а также была подготовлена система огневодных заграждений по рубежу Суэцкого канала. Система предназначалась для слива горючей смеси в канал и создания «моря огня» в случае начала наступления египетских войск.

В ротных опорных пунктах израильских войск по берегу канала размещались защищенные валом песка резервуары. Эта система включала подземные резервуары емкостью по 200 т, трубопроводы обвязки, насосное и компрессорное оборудование, а также элсктровоспламе- нительные устройства. Горючее из резервуаров с помощью компрессоров сбрасывалось по трубопроводам диаметром 100 мм на поверхность воды и поджигалось с помощью электровоспламепителей.

Опробование системы в феврале 1971 г. показало ее эффективность. Выпущенная из одного резервуара легковоспламеняющаяся жидкость горела по всей ширине Суэцкого канала на участке протяженностью 120 м. Интенсивное горение жидкости продолжалось в течение 20 мин.

Вследствие высокой температуры отмечались случаи тления обмундирования у личного состава, находившегося на удалении около 50 м от зоны горения.

Но в боевых условиях эта система так и не была опробована. 6 октября 1973 г. внезапным захватом этих систем специально обученными подразделениями АРЕ удалось предотвратить применение израильтянами огневодных заграждений во время боевых действий. Б результате египтянам удалось форсировать Суэцкий канал и прорвать «Линию Барлева».

По мнению военных специалистов, на Европейском театре войны имеются большие возможности для создания огневодных заграждений. Войска основных европейских стран на учениях отрабатывают технику и тактику их применения и, в случае возникновения вооруженного конфликта, огневодные инженерные заграждения обязательно будут применяться обороняющейся стороной. Командование армий в своих планах предусматривает широко использовать огневодные заграждения, чтобы ограничить мобильность противника и создать условия для нанесения ему максимальных потерь в живой силе и технике.

Совсем недавно, во время конфликта в районе Персидского залива в 1991 г. войска Ирака использовали в своей системе обороны рвы, заполненные горящей нефтью. Но в современной высокоманевренной войне это не послужило заметным препятствием для американских войск, имеющих подавляющий технологический перевес. Поэтому этот пример не говорит о принципиальной слабости подобных заграждений, а всего лишь о той азбучной истине, что оборона эффективна и устойчива лишь при гармоничном сочетании различных систем оружия и методов ведения вооруженной борьбы, одним из эффективных видов которой и являются огневодные заграждения. Кстати, обширное горящее нефтяное поле, созданное Ираком в прибрежной части Персидского залива, послужило серьезным препятствием для войск противостоящей ему коалиции и послужило одной из причин отказа от десантной операции на иракское побережье.

 

Огонь-диверсант

 

Современная война приносит новые неожиданные конструкции и новые способы применения, новые эффективные комбинации зажигательных средств. Диверсанты-поджигатели уже около ста лет используют диверсионные зажигательные мины.

Наряду с перечисленными в предыдущих главах видами зажигательных средств практика войны ввела для вооружения современных армий и партизанско-диверсионных отрядов, оперирующих в тылу врага, специализированные зажигательные средства, применяемые вручную. Действие их подобно действию ручных зажигательных гранат. От последних они отличаются простотой устройства и воспламенения. К числу этих средств относятся; термитные шашки (обыкновенные и с замедлением), термитные патроны и термитные шары. Вот как были устроены и действовали диверсионные зажигательные боеприпасы середины ушедшего века.

Использовались как штатные зажигательные шашки, так и спецсредства, замаскированные под обычные бытовые предметы. Обыкновенная термитная шашка представляет брикет прессованного термита с вмонтированной в него звездкой воспламенения или с воспламени- тельным составом, запрессованным с основным термитным снаряжением в бумажной или картонной оболочке. К звездке или воспламенительному составу присоединяется небольшой отрезок (5-8 см) бикфордова шнура. Шашка воспламеняется наложением спички на сердцевину среза бикфордова шнура и последующим зажиганием ее путем трения намазкой спичечной коробки (обычная технология работы подрывника).

Шашка разгорается через 15-20 с и интенсивно горит, в зависимости от качества и рода снаряжения, в течение 45 с и даже до 1 мин.

Термитная шашка с замедлением может быть рассчитана на кратковременное (от 30 до 40 с) и долговременное замедление (от 30 до 60 мин). Шашки с замедлением могут быть с пиротехническим или химическим замедлением.

Пиротехнический замедлитель (отрезок бикфордова шнура) соответствующей длины обычно применяется для создания кратковременного замедления (несколько десятков секунд или 2-3 мин.).

Химический замедлитель дает замедление в несколько десятков минут и основан на действии серной кислоты, проедающей металлическую или иную диафрагму или просачивающейся через пористую диафрагму.

Шашка (общий вес 0,5 кг) представляет собой жестяную или картонную коробку, в которую впрессован термит. При прессовании снаряжения отпрессовывается отверстие для звездки воспламенения; она монтируется на отдельной жестяной диафрагме вместе с отрезком бикфордова шпура. По центру диафрагмы вырезано газоотводящее отверстие, заклеенное картонной крышкой; сбоку диафрагмы сделано отверстие (диаметром 7-8 мм), сквозь которое поверх диафрагмы выведен срез бикфордова шнура; отверстие и срез шнура обмазаны терочным составом. Другой конец шнура прикреплен к звездке воспламенения. После отпрессовки снаряжения смонтированная воспламенительная головка (диафрагма, бикфордов шнур и звездка воспламенения) вставляются в корпус шашки (звездка воспламенения точно входит в выпрессованное отверстие) и для герметизации подмазывается лаком. Поверх воспламенительной головки надевается жестяная крышка, которая обматывается изоляционной лентой для герметизации при долговременом хранении.

 

 

Термитная шашка с коротким пиротехническим замедлением: 1 – жестяная коробка; 2 – звездка воспламенения; 3 – крышка; 4 – картонный кружок, закрывающий газоотводящее отверстие; 5 – жестяная диафрагма, на которой смонтирована спираль бикфордова шнура; 6 – изоляционная лента; 7 – термитное снаряжение (прессованный термит); 8 – гнездо звездки воспламенения

 

Для зажигания шашки нужно снять крышку, провести намазкой спичечной коробки по терочной головке и шашку поставить или бросить на объект, который требуется зажечь. Через 30-40 с начинается воспламенение шашки; она интенсивно горит от 40 до 50 с.

Термитная шашка с долговременным химическим замедлителем представляет собой картонный цилиндр, заполненный термитной смесью. Для зажигания шашки с ее футляра снимают крышку, вынимают ампулу и вставляют ударник, затем нажимают до отказа ударник, ампулу вкладывают в держатель, футляр закрывают и шашку ставят в вертикальное положение (обязательно) в том месте, где желательно создать очаг огня. Подобная шашка воспламеняется через 30-40 мин. и горит интенсивно до 1 мин.

Термитный патрон представляет собой металлический или картонный цилиндр, заполненный термитной смесью с отдельной звездкой воспламенения или с запрессованным вместе термитным снаряжением и воспламенительным составом с коротким замедлителем (бикфордов шнур, стопин) или без него, с терочной головкой вверху.

Для воспламенения патрона вскрывают крышку; при трении намазкой спичечной коробки о головку патрона последний воспламеняется или немедленно, или с замедлением от 3 до 5 с. Патрон горит интенсивно до 1 мин, в зависимости от количества снаряжения и его рецептуры.

Термитный шар представляет собой шар, отпрессованный из термита одновременно с термитным запалом и покрытый особой воспламенительной рубашкой, загорающейся от трения (спичечная коробка). Обычно шары применяются весом от 100 до 300 г (диаметром 35 и 60 мм). Шар зажигается резким трением особой теркой или намазкой спичечной коробки по поверхности воспламенительной рубашки; загорается он через 2-3 с и горит, в зависимости от веса, от 30 с до 1 мин. Вместо воспламенительной рубашки в шар может быть впрессован запал, проходящий по его диаметру.

Зажигательные термитные шашки (обыкновенные и с замедлением), патроны и шары применяются для поджога зданий и дерево-земляных сооружений, складов с боеприпасами, фуражом, горючим, снаряжением и обмундированием, а также самолетов, автомашин, автоцистерн с горючим и для порчи оружия и прочей боевой техники противника.

Следует обратить внимание на многочисленные, искусно замаскированные зажигательные средства, применяемые агентурой для выполнения диверсионных актов.

Июль 1917 г. От причалов нью-йоркского порта в Англию отошел пароход, нагруженный оружием и боеприпасами. Но в английский порт назначения он не прибыл. Была получена только короткая радиограмма: «На пароходе пожар. Рвутся снаряды». И все. Пароход водоизмещением в пять тысяч тонн бесследно исчез в Атлантическом океане.

Пожар и гибель парохода были вызваны зажигательным устройством, которое по внешнему виду представляло собой сигару, подброшенную немецким диверсантом. Устройство «зажигательной сигары», сконструированной в 1915 г. немцем Вальтером Шеле, было очень простое. Ее свинцовый трубчатый корпус размерами с обычную сигару снаряжался сильным зажигательным составом и химическим взрывателем. Корпус адской машинки разделялся перегородкой на две половины. В одной половине находилась серная кислота, а в другой – реагирующая с серной кислотой и выделяющая при этом большое количество тепла смесь веществ (например, хлорноватистый калий, смешанный с сахарной пудрой). В нужный момент сигара приводилась в действие. После разъедания перегородки в «сигаре» происходила реакция взаимодействия этих веществ, сопровождающаяся взрывом и образованием пламени. И в том месте, где сигара находилась, возникал сильный пожар.

 

 

Термитный шар (натуральный размер): 1 – воспламенительная рубашка, загорается от трения намазкой спичечной коробки; 2 – термит (прессованный); 3 – термитный запал

 

Немецкая разведка широко применяла зажигательные «сигары» как во время Первой мировой войны, так и в последующий период между войнами.

Диверсионные зажигательные снаряды имели самую различную конструкцию и внешний вид. Изготовлялись они в виде карандашей, авторучек, папиросных коробок, даже инструмента и различных распространенных в обиходе предметов (известно применение зажигательных устройств, оформленных в виде молотка, гаечного ключа, рубанка и т. п.). С помощью таких снарядов только в США было взорвано и сожжено свыше 40 военных предприятий и 47 пароходов, нагруженных военными материалами. Широко применялись диверсионные зажигательные средства и во время Второй мировой войны.

Особо необходимо остановиться на искусно сделанном зажигательном средстве, известном под названием «синего карандаша», применявшегося германскими диверсантами в самых неожиданных случаях. Длина этого карандаша 175 мм, толщина 4,1 мм, вес 12,5 г. По виду он представляет собой обычный синий конторский карандаш. Содержимое «карандаша» состояло из целлулоидной трубки, наполненной смесью хлорноватокислого калия, органического вещества (сахар) и стеклянной ампулки, заполненной концентрированной серной кислотой. Ампулка заканчивалась капилляром на расстоянии 11 мм от тупого конца карандаша; здесь же находилось скрытое ударное приспособление в виде кнопки, разбивавшее ампулку от нажима пальца. Между этими двумя основными частями карандаша, именно целлулоидной трубкой со смесью хлората калия и сахара и ампулкой с серной кислотой, помещалась диафрагма из обожженной глины, рассчитанная на просачивание серной кислоты в известное время (10-30 мин.). Концентрированная кислота из разбитой ампулки, просочившись в установленное время сквозь диафрагму, вызывала немедленное воспламенение с образованием интенсивно горящего пламени, нацело уничтожавшего карандаш, независимо от <


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.