Способы снижения энергопотребления процессора. — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Способы снижения энергопотребления процессора.

2018-01-03 559
Способы снижения энергопотребления процессора. 0.00 из 5.00 0 оценок
Заказать работу

Не менее, чем производительность, для процессора важен и такой параметр, как энергопотребление. Особенно остро вопрос энергопотребления встал сейчас, когда наблюдается настоящий бум популярности портативных устройств.

Нашу жизнь уже нельзя представить комфортной без использования ноутбуков, планшетных компьютеров и смартфонов. Однако единственное, что омрачает эту тенденцию, – это время автономной работы подобных устройств. Так ноутбуки, в среднем, могут автономно работать 3-5 часов, планшеты – чуть больше, смартфоны уже могут протянуть при полной нагрузке почти сутки и то не все. Но все это крайне мало для комфортной работы с ними.

Время автономной работы этих устройств напрямую зависит от их энергопотребления, и немалая доля энергопотребления приходится на процессор. Для снижения энергопотребления процессоров используются различные способы и технологии. Давайте рассмотрим наиболее популярные из них.

Самый простой способ снизить энергопотребление и тепловыделение процессора – это уменьшить его тактовую частоту и напряжение, так как энергопотребление процессора пропорционально квадрату его рабочего напряжения и пропорционально тактовой частоте. Наиболее выгодно на энергопотреблении сказывается снижение напряжения. Однако при понижении напряжения рано или поздно уменьшается и тактовая частота, что естественно повлечет за собой снижение производительности.

Однако, зачастую, энергопотребление бывает более критическим параметром работы, и некоторое снижение производительности допустимо. Так большинство мобильных версий процессоров и процессоров для встраиваемых систем имеют тактовую частоту и рабочее напряжение гораздо ниже, чем у их собратьев для настольных версий.

Но не всегда производители устанавливают оптимальное сочетание напряжения и тактовой частоты. Многие мобильные процессоры с установленной тактовой частотой могли бы работать с более низким напряжением, что позволило бы существенно продлить время автономной работы портативного компьютера.

Для получения оптимального соотношения производительности к энергопотреблению, необходимо подобрать такое напряжение, при котором на заданной тактовой частоте процессор будет стабильно работать.

Тактовая частота определяется, исходя из потребностей пользователя, затем для нее подбирается минимальное рабочее напряжение путем постепенного снижения напряжения и тестирования процессора под нагрузкой.

Существуют и не столь кардинальные пути решения этой проблемы.

Например, технология EIST (Enhanced Intel SpeedStep Technology) позволяет динамически изменять энергопотребление процессора, за счет изменения тактовой частоты процессора и напряжения. Изменение тактовой частоты происходит, за счет уменьшения или увеличения коэффициента умножения.

О коэффициенте умножения я уже упоминал выше, но повторюсь. Тактовая частота процессора рассчитывается, как тактовая частота системной шины, умноженная на некий коэффициент, называемый коэффициентом умножения. Уменьшение или увеличение этого коэффициента ведет к уменьшению или увеличению тактовой частоты процессора и к снижению или увеличению рабочего напряжения.

В случаях, когда процессор используется не полностью, его тактовую частоту можно снизить, уменьшая коэффициент умножения. Как только пользователю потребуется больше вычислительных ресурсов, коэффициент умножения будет повышен, вплоть до своего номинального значения. Таким образом, удается несколько снизить энергопотребление.

Аналогичная технология для уменьшения энергопотребления, основанная на динамическом изменении напряжения и тактовой частоты, в зависимости от нагрузки на процессор, используется и компанией AMD, называется она - Cool’n’Quiet.

В абсолютном большинстве случаев вычислительные машины либо вовсе простаивают, либо используются лишь на долю своих возможностей. Например, для просмотра фильма или набора текста вовсе не нужно тех огромных вычислительных возможностей, которыми обладают современные процессоры. Тем более эти мощности не нужны и при простое компьютера, когда пользователь отошел или просто решил сделать небольшой перерыв. Снижая в такие моменты тактовую частоту процессора и его напряжение, можно получить очень серьезный прирост в экономии энергопотребления.

Параметры работы технологии EIST можно настраивать, используя BIOS и программное обеспечение операционной системы, и устанавливать требуемые для конкретного случая профили управления энергопотреблением, тем самым балансируя производительность процессора и его энергопотребление.

Естественно, разработчики стараются оптимизировать и саму структуру процессора для снижения энергопотребления и возможности работы процессора при сверхнизких напряжениях. Однако эта задача – крайне сложная и трудоемкая. Опытные образцы процессоров уже практически вплотную приблизились к порогу минимального рабочего напряжения и уже с трудом отличают напряжение логической единицы от логического нуля. Однако, несмотря на это, разработчики процессоров, в том числе инженеры корпорации Intel, обещают уменьшить энергопотребление современных процессоров аж в 100 раз за ближайшие десять лет. Ну что же, подождем и посмотрим, что у них выйдет.

КЭШ-память.

Несмотря на все технологии и уловки разработчиков, производительность процессора все-таки напрямую зависит от скорости выборки команд и данных из памяти. И даже, если процессор имеет сбалансированный и продуманный конвейер, использует технологию Hyper-Threading и так далее, но не обеспечивает должную скорость выборки данных и команд из памяти, то, в результате, общая производительность ЭВМ не оправдает ваших ожиданий.

Поэтому один из важнейших параметров устройства процессора – это КЭШ-память, призванная сократить время выборки команд и данных из основной оперативной памяти и выполняющая роль промежуточного буфера с быстрым доступом между процессором и основной оперативной памятью.

КЭШ-память строится на базе дорогой SRAM-памяти (static random access memory), обеспечивающей доступ к ячейкам памяти гораздо более быстрый, чем к ячейкам DRAM-памяти (dynamic random access memory), на базе которой построена оперативная память. К тому же SRAM-память не требует постоянной регенерации, что так же увеличивает ее быстродействие. Однако более подробно устройство SRAM, DRAM и других типов памяти рассмотрим в следующей статье, а сейчас более подробно рассмотрим принцип работы и устройства КЭШ-памяти.

КЭШ-память делится на несколько уровней. В современных процессорах, обычно, бывает три уровня, а в некоторых топовых моделях процессоров иногда встречается и четыре уровня КЭШ-памяти.

КЭШ-память более высокого уровня всегда больше по размеру и медленнее КЭШ-памяти более низкого уровня.

Самая быстрая и самая маленькая КЭШ-память – это КЭШ-память первого уровня. Она обычно работает на частоте процессора, имеет объем несколько сотен килобайт и располагается в непосредственной близости от блоков выборки данных и команд. При этом она может быть единой (Принстонская архитектура) или разделяться на две части (Гарвардская архитектура): на память команд и память данных. В большинстве современных процессоров используют разделенную КЭШ-память первого уровня, так как это позволяет одновременно с выборкой команд осуществлять выборку данных, что крайне важно для работы конвейера.

КЭШ-память второго уровня – более медленная (время доступа, в среднем, 8-20 тактов процессора), но зато имеет объем несколько мегабайт.

КЭШ-память третьего уровня – еще медленнее, но имеет сравнительно большой объем. Встречаются процессоры с КЭШ-памятью третьего уровня больше 24 Мб.

В многоядерных процессорах, обычно, последний уровень КЭШ-памяти делают общим для всех ядер. Причем, в зависимости от нагрузки на ядра, может динамически изменяться отведенный ядру объем КЭШ-памяти последнего уровня. Если ядро имеет высокую нагрузку, то ему выделяется больше КЭШ-памяти, за счет уменьшения объема КЭШ-памяти для менее нагруженных ядер. Не все процессоры обладают такой возможностью, а только поддерживающие технологию Smart Cache (например, Intel Smart Cache или AMD Balanced Smart Cache).

КЭШ-память более низкого уровня – обычно, индивидуальная для каждого ядра процессора.

Мы рассмотрели, как устроена КЭШ-память, давайте теперь разберемся, как она работает.

Процессор считывает из основной оперативной памяти данные и заносит их в КЭШ-память всех уровней, замещая данные, к которым давно и наиболее редко обращались.

В следующий раз, когда процессору понадобятся эти же данные, они будут считаны уже не из основной оперативной памяти, а из КЭШ-памяти первого уровня, что значительно быстрее. Если к этим данным процессор долго не будет обращаться, то они будут постепенно вытеснены из всех уровней КЭШ-памяти, вначале из первого, так как он самый маленький по объему, затем из второго и так далее. Но, даже если эти данные останутся только в третьем уровне КЭШ-памяти, все равно обращение к ним будет быстрее, чем к основной памяти.

Однако, чем больше уровней КЭШ-памяти, тем сложнее алгоритм замещения устаревших данных и тем больше времени тратится на согласования данных во всех уровнях КЭШ-памяти. В результате, выигрыш от скорости работы КЭШ-памяти быстро сходит на нет. К тому же SRAM-память – очень дорогая, и при больших объемах, а, как помните, каждый новый уровень КЭШ-памяти должен быть больше предыдущего, быстро снижается показатель цена-качество, что крайне негативно сказывается на конкурентоспособности процессора. Поэтому на практике больше четырех уровней КЭШ-памяти не делают.

Ситуация с КЭШ-памятью дополнительно усложняется в многоядерных процессорах, каждое ядро которых содержит свою КЭШ-память. Необходимо вводить дополнительную синхронизацию данных, хранящихся в КЭШ-памяти разных ядер. Например, один и тот же блок данных основной оперативной памяти был занесен в КЭШ-память первого и второго ядра процессора. Затем первый процессор изменил этот блок памяти. Получается, что в КЭШ-памяти второго процессора лежат уже устаревшие данные и необходимо их обновить, а это дополнительная нагрузка на КЭШ-память, что приводит к снижению общего быстродействия процессора. Эта ситуация тем сложнее, чем больше ядер в процессоре, чем больше уровней КЭШ-памяти и чем больше их объем.

Но, несмотря на такие трудности в работе с КЭШ-памятью, ее применение дает явный прирост скорости работы без существенного увеличения стоимости ЭВМ. И пока не будет придумана оперативная память, которая сможет по скорости соперничать с SRAM-памятью, а по цене – с DRAM-памятью, будет применяться иерархическая организация оперативной памяти с использованием нескольких уровней КЭШ-памяти.


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.