Строение немембранных органоидов — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Строение немембранных органоидов

2018-01-03 366
Строение немембранных органоидов 0.00 из 5.00 0 оценок
Заказать работу

Рибосомы. Так же как и эндоплазматическая сеть, рибосомы были открыты только с помощью электронного микроскопа. Рибосомы - самые маленькие из клеточных органелл. Рибосомы либо располагаются на поверхности мембраны гранулярной ЭПС в один ряд, либо образуют розетки и спирали. В тех клетках, где хорошо развита гранулярная ЭПС, например в полностью дифференцированных клетках печени и поджелудочной железы, большинство рибосом связано с ее мембранами. В клетках же, где гранулярная ЭПС развита слабо, рибосомы преимущественно свободно располагаются в основном веществе цитоплазмы. К клеткам такого типа относятся плазмоциты лимфатических узлов и селезенки, овоциты человека и ряд других. Комплекс нескольких рибосом называется полисомой. Помимо цитоплазмы, рибосомы обнаружены и в клеточном ядре, где они имеют такую же округлую форму, строение и размеры, как и рибосомы цитоплазмы. Часть ядерных рибосом свободно располагается в кариоплазме, а часть их находится в связи с нитевидными структурами, из которых состоят остаточные хромосомы, обнаруживаемые обычно при электронномикроскопическом исследовании интерфазного ядра. В последнее время рибосомы обнаружены в митохондриях и пластидах клеток растений. В состав их входит высокополимерная, так называемая рибосомальная РНК и белок. Соотношение этих двух компонентов в рибосомах почти одинаково. Белок рибосом самых разнообразных клеток и разных организмов в общем одинаков по составу аминокислот, причем в нем часто преобладают основные аминокислоты. Рибосомы содержат также Mg2+. Исследование ультраструктуры клеток многочисленных видов многоклеточных растений и животных, бактерий и простейших показало, что рибосомы – обязательный органоид каждой клетки. На рибосомах происходит синтез белков. В процессах биосинтеза белка роль рибосом заключается в том, что к ним из основного вещества цитоплазмы непрерывно подносятся с помощью т-РНК аминокислоты, и происходит укладка этих аминокислот в полипептидные цепи в строгом соответствии с той генетической информацией, которая передается из ядра в цитоплазму через и-РНК, постоянно поступающую к рибосомам. На основании такой функции рибосом в белковом синтезе можно назвать их своего рода «сборочными конвейерами», на которых в клетках образуются белковые молекулы. В процессе синтеза белка, таким образом, активное участие принимают т-РНК и и-РНК, а роль рибосомальной РНК еще не выяснена. По имеющимся в настоящее время данным, рибосомальная РНК не принимает участия в синтезе белковых молекул. В комплексе с белком рибосом она образует строму этого органоида. При осуществлении процессов синтеза белка в клетках активную роль выполняют не все рибосомы. Наиболее активная роль в синтезе клеточных белков принадлежит рибосомам, связанным с мембранами ЭПС. Можно предполагать, что эти два органоида, теснейшим образом связанные друг с другом, представляют собой единый аппарат синтеза (рибосомы) и транспорта (эндоплазматическая сеть) основной массы белка, вырабатываемого в клетке. В рибосомах, находящихся в ядре, происходит синтез ядерных белков. Рибосомы митохондрий и пластид выполняют функцию синтеза части белков, содержащихся в этих органоидах. Основным местом формирования рибосом служит ядрышко и образованные в нем рибосомы поступают из ядра в цитоплазму.

Клеточный центр – органоид, обнаруженный во всех клетках многоклеточных животных, простейших и в клетках некоторых растений. В состав клеточного центра входит 1-2 или иногда большее количество мелких гранул, называемых центриолями. Центриоли либо непосредственно расположены в цитоплазме, либо лежат в центре сферического слоя цитоплазмы, который называется центросомой или центросферой. Центриоли – это плотные тельца. Центриоли имеют относительно постоянное место расположения в клетке: они занимают геометрический центр ее, но иногда в процессе развития могут перемещаться ближе к периферическим участкам. У многих видов простейших и в половых клетках некоторых многоклеточных организмов центриоли расположены не в цитоплазме, а в ядре, под его оболочкой. Клеточный центр играет важную роль в процессах деления клетки. Известно, что в центриолях содержатся углеводы, белки и совсем незначительное количество липидов, а также очень немного РНК и ДНК. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

Микротрубочки и микрофиламенты. Многие клетки одноклеточных и многоклеточных организмов обладают способностью к движению. Под этим понимается движение клетки в пространстве и внутриклеточное движение ее органоидов. В жидкой среде перемещение клеток осуществляется движением жгутиков и ресничек; так передвигаются многие одноклеточные. Некоторые другие простейшие организмы, а также специализированные клетки многоклеточных передвигаются с помощью выростов, образующихся на поверхности клеток. Клетка находится в постоянном движении. Клеточное движение обеспечивается цитоскелетом, состоящем из микротрубочек, микронитей и клеточного центра. Это белковые внутриклеточные структуры, входящие в состав цитоскелета.

Микротрубочки представляют собой цилиндры диаметром 25 нм с полостью внутри. Их длина может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Микротрубочки полярны: на одном конце происходит самосборка микротрубочки, на другом – разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Микрофиламенты – сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков. Участвуют в формировании цитоскелета клетки, амебоидном движении и др. Нуклеиновых кислот нет.

Клеточные включения. К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ (самостоятельно).

Биологические особенности клеток грибов. Микология – это наука о грибах, выделившаяся в самостоятельную отрасль микробиологии. Грибы имеют черты как растительных, так и животных клеток.

Клетка большинства грибов имеет клеточную стенку, состоящую в основном из полисахаридов (80-90%), связанных с белками и липидами. Кроме того, в ее состав входят хитин, полифосфаты, пигменты и др. В цитоплазме содержится от одного до 20-30-ти ядер, митохондрии, эндоплазматическая сеть, комплекс Гольджи. Запасными питательными веществами служат жиры, гликоген; крахмал в клетках грибов не образуется.

Химический состав клетки

Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельст­вует о единстве органического мира.

Особенно велико содержание в клетке четырех элемен­тов – кислорода, углерода, азота и водорода. В сумме они состав­ляют почти 98% всего содержимого клетки. Следующую группу составляют восемь элементов, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это сера, фосфор, хлор, калий, магний, натрий, кальций, железо. В сумме они составляют 1,9%. Все остальные элементы содержатся в клетке в исключительно малых количествах (меньше 0,01%).

Вода. На первом месте среди веществ клетки стоит вода. Она составляет почти 80% массы клетки. Вода – важнейший компо­нент клетки не только по количеству. Ей принадлежит существен­ная и многообразная роль в жизни клетки. Вода определяет физические свойства клетки – ее объем, упру­гость. Велико значение воды в образовании структуры молекул органических веществ, в частности структуры белков, которая необходима для выполнения их функций. Велико значение воды как растворителя: многие вещества поступают в клетку из внеш­ней среды в водном растворе и в водном же растворе отработан­ные продукты выводятся из клетки. Наконец, вода является не­посредственным участником многих химических реакций (рас­щепление белков, углеводов, жиров и др.). Вода обладает исключительной теплоемкостью, т.е. выполняет терморегуляторную функцию и осуществляет равномерное распределение температуры во внутри- и внеклеточной среде. В растительной клетке вода обеспечивает тургор – тонус клетки.

Соли. К неорганическим веществам клетки, кроме воды, отно­сятся также соли. Для процессов жизнедеятельности из входя­щих в состав солей катионов наиболее важны К+, Na+, Са2+, Mg2+, из анионов НРО42-, Н2РО4-, С1-, НСО3-. Неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. В частности, прочность и твердость костной ткани обеспечиваются фосфатом кальция, а раковин моллюсков – карбонатом кальция. Неорганические вещества обеспечивают разность потенциалов на мембране клетки; являются компонентами буферных систем организма, а также структурными единицами витаминов, ферментов, гормонов.

К органическим веществам клетки относят белки, жиры, углеводы, нуклеиновые кислоты, АТФ и т.д., которые составляют 20-30% состава клетки.

Белки - непериодические полимеры, мономерами которых являются аминокислоты. В состав всех белков входят атомы углерода, водорода, кислорода, азота. Во многие белки, кроме того, входят атомы серы. Есть белки, в состав которых входят также атомы металлов – железа, цинка, меди. Наличие кислотной и основной групп обусловливает высокую реактивность аминокислот. Из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны образуют пептидную связь: CO-NN (ее открыл в 1888 году профессор А.Я. Данилевский), поэтому белки называют полипептидами. Молекулы белков – макромолекулы. Известно много аминокислот. Но в качестве мономеров любых природных белков - животных, растительных, микробных, вирусных – известно только 20 аминокислот. Они получили название «волшебных». Тот факт, что белки всех организмов построены из одних и тех же аминокислот – еще одно доказательство единства живого мира на Земле.

В строении молекул белков различают 4 уровня организации:

- первичная структура – полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными пептидными связями;

- вторичная структура – полипептидная цепь в виде спирали. Между пептидными связями соседних витков и другими атомами возникают многочисленные водородные связи, обеспечивающие прочную структуру;

- третичная структура – специфическая для каждого белка конфигурация - глобула. Удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Есть также ковалентные S-S-связи, возникающие между удаленными друг от друга радикалами серосодержащей аминокислоты цистеина;

- четвертичная структура возникает при соединении нескольких макромолекул, образующих агрегаты. Так, гемоглобин крови человека представляет агрегат из четырех макромолекул.

Нарушение природной структуры белка называют денатурацией. Она возникает под воздействием высокой температуры, химических веществ, лучистой энергии и др. факторов.

Роль белка в жизни клеток и организмов:

1. Строительная (структурная) – белки – строительный материал организма (оболочки, мембраны, органоиды, ткани, органы);

2. Каталитическая функция – ферменты, ускоряющие реакции в сотни миллионов раз;

3. Опорно-двигательная функция – белки, входящие в состав костей скелета, сухожилий; движение жгутиковых, инфузорий, сокращение мышц;

4. Транспортная функция – гемоглобин крови;

5. Защитная - антитела крови обезвреживают чужеродные вещества;

6. Энергетическая функция – при расщеплении белков 1 г освобождает 17,6 кДж энергии;

7. Регуляторная и гормональная – белки входят в состав многих гормонов и принимают участие в регуляции жизненных процессов организма;

8. Рецепторная – белки осуществляют процесс избирательного узнавания отдельных веществ и их присоединение к молекулам.

Углеводы. В состав углеводов входят атомы углерода, кислорода, водорода. Различают простые и сложные углеводы. Простые – моносахариды. Сложные – полимеры, мономерами которых являются моносахариды (олигосахариды и полисахариды). С увеличением числа мономерных звеньев растворимость полисахаридов уменьшается, сладкий вкус исчезает. Моносахариды – это твердые бесцветные кристаллические вещества, которые хорошо растворяются в воде и очень плохо (или совсем не) растворяются в органических растворителях. Среди моносахаридов различают триозы, тетрозы, пентозы и гексозы. Среди олигосахаридов наиболее распространенными являются дисахариды (мальтоза, лактоза, сахароза). Полисахариды наиболее часто встречаются в природе (целлюлоза, крахмал, хитин, гликоген). Их мономерами являются молекулы глюкозы. В воде растворяются частично, набухая, образуют коллоидные растворы. Углеводы входят в состав плазматической мембраны, в состав хитинового покрова насекомых и пр., накапливаются в виде крахмала, т.е. выполняют энергетическую, строительную и запасающую функции.

Липиды – нерастворимые в воде жиры и жироподобные вещества, состоящие из глицерина и высокомолекулярных жирных кислот. Жиры - сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. У растений - в семенах, плодах. Кроме жиров в клетках присутствуют и их производные – стероиды (холестерин, гормоны и жирорастворимые витамины А, D, К, Е, F). Липиды являются:

1. Структурными элементами мембран клеток и клеточных органелл;

2. Энергетическим материалом (1г жира, окисляясь, выделяет 39 кДж энергии);

3. Запасными веществами;

4. Выполняют защитную функцию (у морских и полярных животных);

5. Влияют на функционирование нервной системы;

6. Источник воды для организма (1кг, окисляясь, дает 1,1кг воды).

Нуклеиновые кислоты. Название «нуклеиновые кислоты» происходит от латинского слова «нуклеус», т. е. ядро: они впервые были обнаружены в клеточных ядрах. Они играют центральную роль в хранении и передаче наследственных свойств клетки, поэтому их часто называют веществами наследственности. Нуклеиновые кислоты обеспечивают в клетке синтез белков, точно таких же, как в материнской клетке и передачу наследственной информации.

АТФ. Очень важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). АТФ – универсальный биологический аккумулятор энергии: световая энергия солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. АТФ – неустойчивая структура, при переходе АТФ в АДФ (аденозиндифосфат) выделяется 40 кДж энергии. АТФ образуется в митохондриях клеток животных и при фотосинтезе в хлоропластах растений. Энергия АТФ используется для совершения химической (синтез белков, жиров, углеводов, нуклеиновых кислот), механической (движение, работа мышц) работ, трансформации в электрическую или световую (разряды электрических скатов, угрей, свечение насекомых) энергии.


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.