Основные нормативные документы при проведении ХТА наркотических и одурманивающих веществ. — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Основные нормативные документы при проведении ХТА наркотических и одурманивающих веществ.

2018-01-02 679
Основные нормативные документы при проведении ХТА наркотических и одурманивающих веществ. 0.00 из 5.00 0 оценок
Заказать работу

Кафедра биологической химии

 

 

Контрольная работа № 2

по дисциплине

«Токсикологическая химия»

Вариант № 7

 

Выполнил: студент 5 курса группа 51ФЗ

Камалетдинова Л. Р.

 

Проверил преподаватель:

к.биол.н. Немерешина Ольга Николаевна

 

 

Оренбург, 2017.

Вариант №7

1. Основные нормативные документы при проведении ХТА наркотических и одурманивающих веществ.

2. Токсикомания органическими растворителями.

3. Твердофазная экстракция. Сущность, преимущества ТФЭ. Сорбенты, используемые в ТФЭ.

4. Химическая структура, токсикологическое значение и химико- токсикологический анализ гексенала.

5. Ноксерон. Структурная формула. Токсикологическое значение. Изолирование. Методы определения.

6. Общая характеристика фенилалкиламинов синтетического происхождения. Химическая структура и химико-токсикологический анализ амфетамина и метамфетамина.

7. Химическая структура, токсикологическое значение и химико- токсикологический анализ хинина.

8. Пестициды. Пиретрилы, пиретроиды. Основные представители. Токсикокинетика. Методы определения.

9. Судебно-химическая диагностика отравлений грибами.

10. В отделение судебно-медицинской экспертизы поступил труп женщины, скончавшейся после принятия летальной дозы элениума с суицидальной целью. Провести химико-токсикологический анализ внутренних органов.

Основные нормативные документы при проведении ХТА наркотических и одурманивающих веществ.

Ведение документации в судебно-химических лабораториях регламентируется Приказом №644 от 04.11.2006 «О порядке предоставления сведений о деятельности, связанной с оборотом наркотических средств, психотропных и их прекурсоров».

У эксперта в лаборатории должен быть регистрационный журнал. Эго специальная книга, листы которой пронумерованы, а сама книга прошнурована, опечатана печатью и подписана начальником бюро судебно-медицинской экспертизы. В регистрационном журнале проводится строгий учет вещественных доказательств, что позволяет быстро ориентироваться в ответах на запросы по экспертизам и составлять отчеты.

В рабочем журнале, оформленном, как регистрационный, ежедневно эксперт про­водит записи, связанные с исследованием вещественных доказательств (навеска объек­та, взятая для анализа, основные операции, результаты качественных реакций, расчеты по количественному определению).

Книга актов оформляется так же, как рабочий и регистрационный журналы. Она предназначена для составления по определенной форме акта судебно-химического ана­лиза или заключения эксперта, которые являются юридическими документами по про­веденной экспертизе.

Акт имеет заголовок и состоит из трех частей: введения, описательной части и за­ключения. В описательную часть входят разделы «наружный осмотр» и «химическое исследование» или «исследование под микроскопом». Во введении указываются время начала и окончания экспертизы, основание для производства экспертизы, номер и дата сопроводительного документа, место проведения анализа, кем выполнен, какие объекты исследовались и поставленные перед экспертом вопросы. Под заголовком «обстоятель­ства дела» кратко приводится основное содержание материалов дела. В разделе «наруж­ный осмотр» подробно описываются полученные на исследование объекты. В разделе «химическое исследование» приводятся применяемые методы, техника исследования и полученные результаты. В заключении перечисляются найденные вещества с указанием их количеств, затем ненайденные вещества и приводятся ответы на поставленные орга­нами следствия и суда вопросы. К акту судебно-химической экспертизы по возможности должны быть приложены микрофотографии полученных кристаллов, налетов (например, в трубке Марша), продуктов реакций (например, «берлинской лазури», «серебряного зер­кала»), которые подтверждают правильность сделанных экспертом выводов.

 

Обнаружение гексенала

1. От прибавления солейкобальта и изопропиламина к гексеналу появляется фиолетовая окраска. Для обнаружения барбитуратов Парри (1924) предложил реакцию, основанную на взаимодействии этих веществ с солямикобальта и аммиаком. Позднее другие исследователи аммиак заменили изопропиламином. При взаимодействии барбитуратов с изопропиламином и солямикобальта образуются внутрикомплексные соединения:

Выполнение реакции. К 2 мл хлороформного раствора исследуемого вещества прибавляют 0,3 мл 1 %-го раствораацетата кобальта в безводном этиловом спирте и 1 мл 5 %-гораствораизопропиламина в этиловом спирте. При наличии барбитуратов появляется фиолетовое окрашивание. Вместо этилового спирта можно использовать метиловый спирт.

2. Гексенал с солямикобальта и щелочьюдает розовую или красную окраску. Цвиккер (1931) установил, что от прибавления хлорида кобальта и гидроксида бария к барбитуратам образуется окрашенное соединение. В 1932 г. Цвиккер вместо гидроксида бария применил гидроксид калия. Другие исследователи вместо гидроксида бария применяли гидроксид лития.

Выполнение реакции. Исследуемое вещество или остаток, полученный после выпаривания вытяжек из соответствующих объектов, растворяют в 0,2—0,5 мл абсолютного этилового спирта. К этому раствору прибавляют 1—2 капли 1 %-го раствораацетата кобальта в абсолютном этиловом спирте и 1—2 капли 1 %-горастворагидроксида калия в абсолютном этиловом спирте. При наличии барбитуратов появляется розовая или красная окраска.

Выполнению этой реакции мешает вода, которая разлагает окрашенное соединение. Поэтому при выполнении указанной реакции используют реактивы, растворенные в абсолютном этиловом или метиловом спирте. Оттенок и интенсивность окраски зависят от применяемого спирта, что объясняется различной сольватирующей способностью образовавшихся соединений этими спиртами. Указанную реакцию дают некоторые гидантоины, сульфаниламидные препараты, пурины, пиримидины и др.

3. От прибавления концентрированной серной кислоты к гексеналу образуется осадок, состоящий из сростков игольчатых кристаллов.

4. Гексенал с подкисленным спиртовым растворомиодида калия образует кристаллический осадок.

5. Обнаружение гексенала по УФ-спектрам. Гексенал в ходе химико-токсикологического анализа выделяется из биологического материала в виде гексобарбитала, который можно обнаружить по спектрам поглощения.

Сухие остатки барбитуратов, выделенных из биологического материала методом изолирования этих веществводой, подкисленной серной кислотой (см. выше), в зависимости от исследуемого барбитурата растворяют в хлороформе или в метиловом спирте. Сухие остатки барбитала, гексенала, фенобарбитала и циклобарбитала растворяют в 6 мл хлороформа, а сухие остатки барбамила и этаминала — в 2 мл метилового спирта. Объемы растворовбарбамила и этаминала в метиловом спирте доводят хлороформом до 6 мл. К полученным растворам барбитуратов прибавляют по 5 мл 0,125 %-го раствораацетата кобальта в метиловом спирте и по 1 мл 50 %-гораствораизопропиламина в метиловом спирте. Оптическую плотность окрашенных в фиолетовый цвет растворов измеряют при помощи фотоэлектроколориметра ФЭК-М (светофильтр зеленый, кювета 20 мм) или с помощью другой марки фотоэлектроколориметра.

В ИК-области спектра гексенал (диск с бромидом калия) имеет основные пики при 1712, 1660, 1390, 1358 см -1.

5. Ноксерон. Структурная формула. Токсикологическое значение. Изолирование. Методы определения.

Ноксерон (глютетимид, дориден, элродорм) —З-этил-3-фенилглутаримид— белый кристаллический порошок. Под влиянием щелочей происходит расщепление пиперидинового цикла в ноксероне:

По данным Е. Кларка, под влиянием 0,5 н. растворащелочи уже через 90 с начинается размыкание пиперидинового цикла в молекулахноксерона.

Ноксероннерастворим в воде, растворяется в хлороформе (1:1), этиловом спирте (1:5), диэтиловом эфире (1:12) и в других органических растворителях.

Ноксерон экстрагируется органическими растворителями из кислых водных растворов.

Применение. Действие на организм. Ноксерон применяется как успокаивающее и снотворное средство. Снотворное действие ноксерона слабее, чем действие барбитуратов. При длительном применении ноксерона к нему развивается привыкание.

Метаболизм. Ноксерон быстро всасывается из пищевого канала и относительно быстро выделяется из организма. Он является рацематом. Каждая энантиоморфная форма этого препарата метаболизируется неодинаково. Правовращающая форма ноксеронаметаболизируется с образованием α-этил-α-фенил-α-оксиглютетимида, часть которого превращается в α-этил-α-фенилглютаконимид. Левовращающая форма ноксерона превращается в α-(1-оксиэтил)-α-фенилглутаримид. Затем некоторая часть этого метаболита превращается в α-фенилглютаримид. Часть указанных выше метаболитов выделяется с мочой в виде глюкуронидов.

Выделение ноксерона из биологического материала. Ноксерон из биологического материала изолируют водой, подкисленной щавелевой кислотой. Для обеспечения полноты изолирования ноксерона из биологического материала последний 3 раза по 1 ч настаивают с водой (по 150, 75 и 75 мл), подкисленной щавелевой кислотой (рН=1...2). Полученные при этом кислые вытяжки соединяют и взбалтывают с хлороформом, в который переходит ноксерон и некоторые примеси. Для очистки ноксерона от примесей хлороформные вытяжки взбалтывают с 0,5 н. растворомсоляной кислоты. При этом ноксерон остается в хлороформном слое, который затем используют для идентификации и количественного определения этого препарата.

При исследовании мочи и крови на наличие ноксирона его экстрагируют хлороформом. С этой целью к моче или крови прибавляют равный объем хлороформа и взбалтывают в течение 15 мин. Хлороформную вытяжку отделяют от мочи или крови и взбалтывают с 0,5 н. растворомсоляной кислоты. Очищенные таким образом хлороформные вытяжки исследуют на наличие ноксирона.

 

Обнаружение ноксерона

Реакция с изопропиламином и солямикобальта. Для обнаружения барбитуратов Парри (1924) предложил реакцию, основанную на взаимодействии этих веществ с солямикобальта и аммиаком. Позднее другие исследователи аммиак заменили изопропиламином. При взаимодействии барбитуратов с изопропиламином и солямикобальта образуются внутрикомплексные соединения:

Выполнение реакции. К 2 мл хлороформного раствора исследуемого вещества прибавляют 0,3 мл 1 %-го раствораацетата кобальта в безводном этиловом спирте и 1 мл 5 %-гораствораизопропиламина в этиловом спирте. При наличии барбитуратов появляется фиолетовое окрашивание. Вместо этилового спирта можно использовать метиловый спирт.

Реакция с хлорциикиодом. От прибавления капли растворахлорцинкиода к ноксерону через 2—5 мин образуются темно-бурого цвета кристаллы, имеющие форму призм или сростков из них.

Приготовление раствора хлорцинк йода.

Растворяют 2 гхлорида цинка в 10 мл воды (раствор А). В другой склянке растворяют 2,1 гиодида калия в 5 мл воды. В полученной жидкости растворяют 0,1 г дважды сублимированного иода (раствор Б). К раствору А прибавляют по каплям при перемешиваниираствор Б. К смеси растворов А и Б прибавляют несколько кристаллов дважды сублимированного йода. Через сутки прозрачную жидкость переносят в склянку из оранжевого стекла.

Перекристаллизация ноксерона из серной кислоты. К остатку ноксерона, полученному после испарения хлороформной вытяжки, прибавляют каплю концентрированной серной кислоты. После растворения остатка в кислоте прибавляют каплю воды. При наличии ноксерона через 10—30 мин появляются сростки бесцветных призматических кристаллов.

Обнаружение ноксерона методом хроматографии в тонком слое силикагеля. На пластинку, покрытую тонким слоем силика-геля КСК, наносят каплю исследуемого раствора и каплю раствора «свидетеля». Пятна нанесенных растворов подсушивают на воздухе, а затем пластинку вносят в камеру для хроматографирования, насыщенную парамирастворителей (смесь ацетона и хлороформа в соотношении 1:9). После продвижения растворителей на пластинке на 10 см выше линии старта пластинку вынимают из камеры, подсушивают на воздухе и опрыскивают 1 %-м раствором нитрата ртути (I). При наличии ноксерона в исследуемом растворе на белом фоне пластинки появляются серо-черного цвета пятна (Rf = 0,60...0,65). Этот метод позволяет обнаружить 10 мкг ноксерона в пробе.

Приготовление хроматографических пластинок.

К 2,8 г силикагеля КСК прибавляют 0,16 ггипса и 7,5 мл воды. Смесь хорошо перемешивают, полученную суспензию наносят на стеклянную пластинку (9 x 12 см), которую высушивают на воздухе. Затем слой сорбента активируют нагреванием пластинки в сушильном шкафу в течение 30 мин при 105—110°С.

Обнаружение ноксерона по УФ- и ИК-спектрам. Растворноксерона в этиловом спирте имеет максимумы поглощения при 251, 257 и 263 нм. В щелочном раствореноксерон имеет максимум при 235 нм и минимум при 223—225 нм. Как указывает Е. Г. Кларк, измерение максимумов поглощения ноксерона в щелочных растворах должно производиться не позднее 90 с после прибавления щелочи, так как при более длительном соприкосновении ноксерона со щелочьюсветопоглощение раствора изменяется в результате разрушения пиперидинового цикла в молекулах этого препарата. В ИК-области спектра ноксерон (диск с бромидом калия) имеет основные пики при 1686, 1710 и 1200 см- 1.

Для обнаружения ноксерона может быть использована реакция образования гидроксаматажелеза (Е. Д. Зинакова).

Предварительная проба на наличие ноксерона в моче. 50 мл мочи вносят в делительную воронку и подкисляют 0,1 н. растворомсоляной кислоты до рН = 4...5. Подкисленную мочу дважды взбалтывают с новыми порциями диэтилового эфира (по 20 мл). Эфирные вытяжки соединяют и взбалтывают с 4 мл воды, а затем отделяют водную фазу от эфирной вытяжки. Эту вытяжку выпаривают досуха. Сухой остаток растворяют в 5 мл хлороформа. К части хлороформного раствора прибавляют 2 капли свежеприготовленного 1 %-го раствораацетата кобальта в метиловом спирте и 2 капли свежеприготовленного 1 %-горастворагидроксида лития в метиловом спирте. Появление синей окраски, переходящей в сине-зеленую, указывает на наличие ноксерона в моче.

Обнаружение хинина

Предварительная проба на наличие хинина в моче. В делительную воронку вносят 2 мл мочи, которую подщелачивают раствором аммиака, а затем прибавляют 4 мл хлороформа и взбалтывают в течение 5 мин. От водной фазы отделяют слой органического растворителя, который взбалтывают с 3 мл 10 %-го растворасерной кислоты. Синяя флуоресценция водной фазы указывает на наличие хинина в моче. Флуоресценция становится более выраженной, если кислую водную вытяжку облучать УФ-светом.

Реакции с реактивами группового осаждения алкалоидов. Хининдает осадки с реактивами Бушарда, Драгендорфа, Майера, Зонненшейна и другими реактивами группового осажденияалкалоидов.

Обнаружение хинина по флуоресценции. Растворыхинина, подкисленные серной кислотой, имеют голубую флуоресценцию. При наличии ионовхлора и некоторых других ионов в растворахфлуоресценцияхинина ослабляется.

Флуоресценцияхинина как двухосновного основания зависит от рН среды. В кислой среде хинин имеет голубую флуоресценцию. В щелочной среде (рН~9) хинин имеет фиолетовую флуоресценцию. Продукты окисленияхинина имеют желто-зеленую флуоресценцию.

Выполнение опыта. Исследуемый раствор вносят в фарфоровую чашку и выпаривают досуха. К сухому остатку прибавляют 4—5 мл 0,1 н. растворасерной кислоты. Полученный раствор переносят в пробирку, которую облучают УФ-лучами. При наличии хинина появляется голубая флуоресценцияраствора. От прибавления к этой жидкости нескольких капель 0,1 н. растворагидроксида натрия интенсивность голубой флуоресценции ослабевает, а затем (при рН~9) появляется фиолетовая флуоресценция.

Если к растворухинина, подкисленному серной кислотой, прибавить несколько капель бромной воды, разбавленной десятикратным объемом воды (до полного тушения флуоресценции), а затем прибавить несколько капель 25 %-го раствора аммиака до щелочной реакции, то появляется желто-зеленая флуоресценция.

Талейохинная реакция. От прибавления к хинину бромной воды, а затем аммиака образуется зеленого цвета талейохин, который экстрагируется хлороформом:

Выполнение реакции. Раствор исследуемого вещества выпаривают досуха. К сухому остатку прибавляют 1 мл воды. К полученному раствору по каплям прибавляют бромную воду (избегая ее избытка) до слабо-желтой окраски. От прибавления нескольких капель раствора аммиака к слабо-желтому раствору появляется ярко-зеленая окраска, которая при нейтральной реакции становится синей, а при добавлении кислоты переходит в красную или фиолетовую. При взбалтывании жидкости, имеющей зеленую окраску, с хлороформомпоследний приобретает зеленую окраску.

На воспроизводимость реакции влияет концентрация исследуемого вещества, объемы прибавляемых реактивов и т. д. Реакции мешают амидопирин, антипирин, кофеин и др.

Эритрохинная реакция. Несколько капель исследуемого раствора выпаривают досуха, прибавляют 1 мл воды, слабо подкисленной серной или уксусной кислотой, каплю бромной воды и каплю 10%-горастворагексацианоферрата (III) калия. Полученную жидкость хорошо взбалтывают, затем по каплям прибавляют аммиак до щелочной реакции. При наличии хинина в исследуемом растворе появляется розовая или красно-фиолетовая окраска, которая при взбалтывании с хлороформом переходит в хлороформный слой.

Обнаружение хинина методом хроматографии. Для обнаружения хинина применяют метод хроматографии в тонком слое силикагеля. На линию старта на хроматографической пластинке наносят 1—2 капли хлороформной вытяжки. Правее на расстоянии 2—3 см на линию старта наносят каплю раствора «свидетеля» (0,01 %-й растворморфина в хлороформе). Пятна на пластинке подсушивают на воздухе. Затем пластинку вносят в камеру для хроматографирования, насыщенную парамирастворителей (эфир — ацетон — 25 %-ыйаммиак в соотношении 40: 20: 2). Камеру плотно закрывают крышкой. После того как система растворителей поднимется на 10 см выше линии старта, пластинку вынимают из камеры, подсушивают на воздухе и опрыскивают реактивом Драгендорфа, модифицированным по Мунье.

Пятна хинина на хроматограмме имеют розовато-бурую окраску (Rf = 0,39±0,01).

Обнаружение хинина по УФ- и ИК-спектрам. Основание хинина в этиловом спирте имеет максимумы поглощения при 236, 278 и 332 нм, а хинин в 0,1 н. растворесерной кислоты имеет максимумы поглощения при 250, 316 и 346 нм. В ИК-области спектра основание хинина (диск с бромидом калия) имеет основные пики при 1235, 1510, 1030 и 1619 см-1.

8. Пестициды. Пиретрины, пиретроиды. Основные представители. Токсикокинетика. Методы определения.

Пиретрин (природного происхождения) – растительный инсектицид, является сильнодействующим контактным ядом для насекомых. Он легко проникает в организм насекомых, вызывая паралич и последующую гибель.

Недостатки пиретрина:

в организме насекомого может быстро метаболизироваться: парализованные особи могут «выздоравливать» и восстанавливать нормальную жизнедеятельность, поэтому после обработки помещения пиретрумом рекомендуется парализованных насекомых сметать и уничтожать;

низкая фотохимическая стабильность: под действием света и при повышении температуры воздуха снижается инсектицидная активность.

Современные пиретроиды – синтетические аналоги пиретринов. Наиболее широко применяемые в настоящее время. Малотоксичные и умереннотоксичные для теплокровных животных, эти соединения обладают сильным инсектицидным действием и быстрым парализующим эффектом. Они не накапливаются в почве и живых организмах, разлагаясь во внешней среде на свету.

Пиретроиды I поколения: аллетрин (пинамин) и его изомеры, неопинамин (тетраметрин) и другие. Для них характерно быстрое инсектицидное действие, невысокая степень фото – и термостабильности, краткосрочность остаточного действия на обработанных поверхностях. Воздействие этого типа пиретроидов приводит к повышению активности насекомых, тремору, нарушению координации движений, нокдауну. Вследствие летучести их вводят в состав аэрозолей, тлеющих спиралей, в пластины и жидкости для электрофумигаторов, применяемые для уничтожения летающих насекомых.

Пиретроиды II поколения: ресметрин, тетраметрин и т.д. Отрицательным свойством пиретроидов II поколения является их невысокаяфотостабильность.

 

Соединения III поколения: перметрин, циперметрин и его изомеры (альфаметрин и зета – циперметрин, бета – циперметрин), сумицидин (фенвалерат и его изомер эсфенвалерат), бифентрин, цигалотрин и его изомер лямда – цигалотрин, цифлутрин и т. д.

Пиретроиды II и III поколения отличаются высокой инсектицидной активностью. Соединения этого типа также вызывают у насекомых гиперактивность, потерю координации, тремор, паралич. Они действуют несколько медленнее пиретроидов I поколения, но обладают длительным остаточным действием на обработанных поверхностях.

По механизму действия на организм членистоногих пиретроиды относятся к сильнодействующим нейротропным ядам широкого спектра действия, причем их действие более выражено при пониженных температурах. Они действуют на оболочки нервов: вызывают задержку закрытия Na – каналов в мембранах нервных клеток, что приводит к задержке прохождения нервного импульса. Это может приводить к мгновенному введению насекомого в состояние быстрого и глубокого паралича «нокдаун – эффект», а также к возбуждающим действиям (гиперактивности), стимулирующим полет летающих насекомых и двигательную активность у ползающих. Являются преимущественно контактными ядами. Некоторые синтетические пиретроиды сохраняют остаточное действие на обработанных поверхностях свыше месяца, более эффективны при низких температурах. При повышении температуры высокая активность обменных процессов в организме насекомого способствует более быстрому распаду пиретроидов, что ослабляет их инсектицидное действие.

По проявлению симптомов отравления пиретроиды делятся на два типа. Воздействие пиретроидов первого типа (аллетрин, неопинамин) приводит к повышенной активности насекомых, тремору, нарушению координации, нокдауну. Препараты второго типа (дельтаметрин, циперметрин и другие) вызывают медленную деполяризацию мембраны нерва и нервных окончаний и последующую блокаду проводимости нерва, сопровождающуюся параличом. Препараты II типа действуют несколько замедленнее по сравнению с пиретроидами I типа, но явление обратимости паралича у насекомых не выявлено.

Сегодня эта группа составляет до 50% применяемых в мире препаратов.

Токсикокинетика варьирует в зависимости от конкретного компонента. Данные по кинетике ограничены, ввиду большого количества препаратов и слабой изученности. При нанесении на коже абсорбция менее 2%. При попадании в ЖКТ абсорбция может достигать 40%-60%. Вдыхание приводит к быстрой абсорбции пиретринов и пиретроидов. Пиретриныжирорастворимы, подвергаются быстрому метаболизму и экскреции. Пиретроидылипофильны и склонны к накоплению в тканях с высоким содержанием липидов (жировая клетчатка, центральная и периферическая нервная система). Распределяются также в другие ткани, включая печень, почки и молоко.
Пиретроиды могут длительно сохраняться в коже медленно выделяться в системный кровоток. При абсорбции множество типов тканей включены в метаболизм, специфические ферменты отсутствуют. Выведение с мочой и фекалиями в неизменном виде и в виде метаболитов.

Симптоматика острого отравления проявляется через 5-6 часов латентного периода из признаков астеновегетативного синдрома. Сначала возникают интенсивная головная боль, головокружение, общая слабость. Пациентов беспокоит жжение, покалывание и зуд кожи лица, выраженные болезненные парестезии в этой и других открытых участках тела. При осмотре отмечается гиперемия кожи лица, конечностей, видимых слизистых оболочек, склеры. В течение 2-3 первых суток отравления наблюдается повышение температуры тела до 38 ° C.

В картине острых отравлений пиретроидами у людей и теплокровных животных преобладают симптомы поражения нервной системы. В первые часы после начала проявлений интоксикации отмечаются мышечные фасцикуляции или судороги в сгибательных и разгибательных мышцах конечностей. Кратковременные миофасцикуляции в мышцах, испытывающих нагрузки, отмечаются в течение 3-5 последующих суток. Впоследствии возникают тремор, нарушение координации движений, клонико-тонические судороги, парез конечностей, токсическая энцефалопатия с признаками поражением мозжечковой системы.

В неврологическом статусе преобладают незначительно выраженные общемозговые симптомы с наличием признаков мезэнцефальных нарушений: затруднение поворотов глазами, ограничение взора вверх и наружу, вялость зрачковых реакций. Отмечаются снижение корнеального и конъюнктивального рефлексов, появление субкортикальных знаков, неустойчивость в позе Ромберга, тремор пальцев вытянутых рук, нечеткость выполнения координаторных проб, оживление сухожильных рефлексов. Наблюдаются эмоционально-волевые расстройства (раздражительность, лабильность настроения, плохой сон, беспокойство, тревога). Расстройства болевой чувствительности не выявляются.

Пиретроиды, в основном II типа, имеют гепатотоксическое действие. Развивается токсический гепатит с признаками умереннойгепатомегалии. Появляются боли в правом подреберье, тошнота, рвота с разной степенью проявлений. При проведении биохимических исследований крови обнаруживается умеренное повышение активности ферментов переаминирования (трансаминаз-аспартат- и аланинаминотрансферазы), щелочной фосфатазы, сорбитдегидрогеназы, уровня тимоловой пробы, снижение протромбинового индекса, содержания белка и мочевины в сыворотке крови.

В большинстве случаев при остром отравлении пиретроидами наблюдаются умереннаягиперсоливация, слезотечение, кашель со слизистым мокротой. Снижение активности холинэстеразы эритроцитов носит кратковременный характер. В течение суток она спонтанно восстанавливается. Имеет место дерматоз лица и кистей. По данным общего анализа крови развивается вторичная гипохромная анемия, в тяжелых случаях — отек легких, кома.

Хроническое воздействие пиретроидов характеризуется нарушением чувствительности кожи лица, появлением симптомов раздражения верхних дыхательных путей за счет вовлечения в патологический процесс периферических аксонов.

Методы изолирования.

Изолирование из трупного материала. Как вещества органической природы нейтрального характера пиретроиды экстрагируются эфиром или хлороформом из растворов с рН = 2-3. Преимущество отдается обычно изолированием спиртом. Из биологического материала спиртом способны извлекаться не только нативные соединения, но и полярные продукты метаболизма пиретроидов.

При направленном анализе в качестве экстрагентов предлагается использовать гексан, петролейный эфир или смесь гексана и ацетона в соотношении 9:1 или 7:3. Эти экстрагенты позволяют извлекать меньшее количество соэкстрактивных веществ.

Для очистки извлечений из трупного материала используют реэкстракцию или колоночную хроматографию.

Изолирование синтетическихпиретроидов из крови и мочи. Для изолирования предложена твердофазная экстракция. 1 мл плазмы крови или мочи разбавляют 10 мл 70% раствора метанола. В качестве сорбента используют ненабухающие модифицированные силикагели, обладающие свойством с высокой скоростью устанавливать сорбционное равновесие. Разбавленную метанолом плазму или мочу пропускают через патрон с сорбентом. Пиретроиды с колонки элюируют смесью метанол-вода.

Анализ извлечений. Наиболее эффективными методами обнаружения пиретроидов являются методы ТСХ, ГЖХ, ГХ/МС и иммунохимический анализ.

Для количественного определения пиретроидов предложены различные методы, но чаще всего используют метод ГЖХ по высоте или площади пика с использованием внутреннего стандарта, а также метод денситометрии. Он проводится на хроматографических пластинках после получения окрашенных пятен. С помощью специальных сканирующих устройств определяют площадь пятна и рассчитывают концентрацию пиретроида, используя стандартные образцы.

 

В отделение судебно-медицинской экспертизы поступил труп женщины, скончавшейся после принятия летальной дозы элениума с суицидальной целью. Провести химико-токсикологический анализ внутренних органов.

Элениум или хлордиазепоксид представляет собой белый или светло-желтый кристаллический порошок, хорошо растворяется в воде. Он экстрагируется органическими растворителями из щелочной среды. Лактам, являющийся метаболитомхлордиазепоксида, экстрагируется диэтиловым эфиром из нейтральной и кислой среды.

Хлордиазепоксид относится к транквилизаторам. Он оказывает успокаивающее действие на центральную нервную систему, обладает противосудорожной активностью, потенцирует действие снотворных веществ и анальгетиков, проявляет умеренный снотворный эффект.

Хлордиазепоксид применяется при невротических состояниях, неврозах, миозитах, шизофрении, кожных заболеваниях, сопровождающихся зудом, и т. д.

Метаболизм. Хлордиазепоксид быстро всасывается из желудочно-кишечного тракта. Период полусуществованияхлордиазепоксида в плазме крови составляет 22—24 ч. Часть неизмененного хлордиазепоксида и его метаболитов выделяется с мочой, а часть — образует конъюгаты, которые тоже выделяются с мочой.

 

Кафедра биологической химии

 

 

Контрольная работа № 2

по дисциплине

«Токсикологическая химия»

Вариант № 7

 

Выполнил: студент 5 курса группа 51ФЗ

Камалетдинова Л. Р.

 

Проверил преподаватель:

к.биол.н. Немерешина Ольга Николаевна

 

 

Оренбург, 2017.

Вариант №7

1. Основные нормативные документы при проведении ХТА наркотических и одурманивающих веществ.

2. Токсикомания органическими растворителями.

3. Твердофазная экстракция. Сущность, преимущества ТФЭ. Сорбенты, используемые в ТФЭ.

4. Химическая структура, токсикологическое значение и химико- токсикологический анализ гексенала.

5. Ноксерон. Структурная формула. Токсикологическое значение. Изолирование. Методы определения.

6. Общая характеристика фенилалкиламинов синтетического происхождения. Химическая структура и химико-токсикологический анализ амфетамина и метамфетамина.

7. Химическая структура, токсикологическое значение и химико- токсикологический анализ хинина.

8. Пестициды. Пиретрилы, пиретроиды. Основные представители. Токсикокинетика. Методы определения.

9. Судебно-химическая диагностика отравлений грибами.

10. В отделение судебно-медицинской экспертизы поступил труп женщины, скончавшейся после принятия летальной дозы элениума с суицидальной целью. Провести химико-токсикологический анализ внутренних органов.

Основные нормативные документы при проведении ХТА наркотических и одурманивающих веществ.

Ведение документации в судебно-химических лабораториях регламентируется Приказом №644 от 04.11.2006 «О порядке предоставления сведений о деятельности, связанной с оборотом наркотических средств, психотропных и их прекурсоров».

У эксперта в лаборатории должен быть регистрационный журнал. Эго специальная книга, листы которой пронумерованы, а сама книга прошнурована, опечатана печатью и подписана начальником бюро судебно-медицинской экспертизы. В регистрационном журнале проводится строгий учет вещественных доказательств, что позволяет быстро ориентироваться в ответах на запросы по экспертизам и составлять отчеты.

В рабочем журнале, оформленном, как регистрационный, ежедневно эксперт про­водит записи, связанные с исследованием вещественных доказательств (навеска объек­та, взятая для анализа, основные операции, результаты качественных реакций, расчеты по количественному определению).

Книга актов оформляется так же, как рабочий и регистрационный журналы. Она предназначена для составления по определенной форме акта судебно-химического ана­лиза или заключения эксперта, которые являются юридическими документами по про­веденной экспертизе.

Акт имеет заголовок и состоит из трех частей: введения, описательной части и за­ключения. В описательную часть входят разделы «наружный осмотр» и «химическое исследование» или «исследование под микроскопом». Во введении указываются время начала и окончания экспертизы, основание для производства экспертизы, номер и дата сопроводительного документа, место проведения анализа, кем выполнен, какие объекты исследовались и поставленные перед экспертом вопросы. Под заголовком «обстоятель­ства дела» кратко приводится основное содержание материалов дела. В разделе «наруж­ный осмотр» подробно описываются полученные на исследование объекты. В разделе «химическое исследование» приводятся применяемые методы, техника исследования и полученные результаты. В заключении перечисляются найденные вещества с указанием их количеств, затем ненайденные вещества и приводятся ответы на поставленные орга­нами следствия и суда вопросы. К акту судебно-химической экспертизы по возможности должны быть приложены микрофотографии полученных кристаллов, налетов (например, в трубке Марша), продуктов реакций (например, «берлинской лазури», «серебряного зер­кала»), которые подтверждают правильность сделанных экспертом выводов.

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.097 с.