Сущестование и дифференцируемость неявной функции — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Сущестование и дифференцируемость неявной функции

2017-12-21 217
Сущестование и дифференцируемость неявной функции 0.00 из 5.00 0 оценок
Заказать работу

 

Теорема. Пусть функция двух переменных и ее частные производ-ные и непрерывны в некоторой окрестности точки , причем: а Тогда уравнение определяет (в не-которой окрестности точки ) единственную функцию . Эта функция дифференцируема и

(1)

Докажем формулу (1), принимая без доказательства существование и дифференцируемость неявной функции . То, что уравнение определяет некоторую функцию , означает следующее: (в не-которой окрестности точки ). Продифференцируем это тождество почленно, используя формулу (2) предыдущего параграфа:

Из последнего равенства и вытекает формула (1).

Пример. Рассмотрим функцию и точку Вычислим производные: Нетрудно видеть, что все условия теоремы выполнены: непрерывны в окрестности точки и , Следовательно, в некоторой окрестности точки , уравнение определяет некоторую функцию , обращающую уравнение в тождество. Ее производная:

Замечательно, что по свойствам функции двух переменных , задан-ной непосредственно, мы можем судить о свойствах функции , для которой непосредственного задания мы не имеем.

Замечание 1. Геометрический смысл условия линия определяемая уравнением имеет в точке невертикальную касательную, т.е. саму линию можно понимать как график некоторой функции (в некоторой окрестности точки М 0).

Замечание 2. Теорема легко обобщается на случай неявных функций нескольких переменных.

 

Лекция 19

Касательная к кривой в пространстве

 

I Вектор-функция и ее производная

Определение 1. Если каждому значению переменной t из некоторого мно-жества Т поставлен в соответствие некоторый вектор , то говорят, что на множестве Т задана вектор-функция

Определение 2. Вектор называют пределом вектор-функции в точке и пишут , если .

Определение 3. Производной вектор-функции в точке называют предел

Если в пространстве задана декартова прямоугольная система координат, то вектор определяется своими проекциями, т.е.

или .

Таким образом, вектор-функция – это упорядоченная тройка обычных функций одной переменной. А так как

,

то определение 2 равносильно следующим трем равенствам

.

Аналогично для производной получаем

.

Будем откладывать векторы , , от начала координат. Тогда их концы составят в пространстве некоторую линию, которую называют годографом вектор-функции . Например, для вектор-функции годограф – это винтовая линия.

 

II Физический смысл производной вектор-функции

Положение точки М в пространстве можно задавать ее координатами (в не-которой системе координат), а можно задавать и радиус-вектором , где О – начало координат. Если точка М движется, то зависит от времени, т.е. движение точки в пространстве можно задавать вектор-функцией , где t – время из некоторого промежутка. Годограф этой функции – это траектория дви-жения. Производная – это вектор мгновенной скорости:

.

 

III Уравнения касательной

Линию в пространстве обычно задают системой параметрических урав-нений

Однако, удобно такую линию понимать как годограф вектор-функции

.

Напомним, что, кратко говоря, касательная к линии L в ее точке –это пре-дельной положение секущей , когда точка стремиться к вдоль L. Другими словами, касательная в точке – это та прямая, проходящая через , направляющий вектор которой есть предел направляющего вектора секущей. Пусть и Тогда

,

т.е. , а следовательно и служат направляющими векторами секущей. Поэтому

Отсюда получаем два вывода:

1)вектор мгновенной скорости точки направлен по касательной к траек-тории движения;

2)канонические уравнения касательной к линии L в точке , которая соответствует значению параметра , имеют вид:

Пример. Показать, что касательные к линии образуют с осью постоянный угол.

Решение. Для винтовой линии направляющий вектор касательной . Если – угол между касательной и осью , то

.

Напомним, что – орт оси : . Значит,

.

Как видим, , а значит и , не зависят от параметра t, т.е = сonst.

Замечание. Нетрудно заметить, что для плоской линии

уравнение касательной имеет вид

Пример. Составить уравнение касательной к эллипсу

Решение. Пусть – точка касания, соответствующая значению параметра : . Тогда уравнение касательной:

Разделив обе части последнего равенства на а . b, получим известную формулу для касательной к эллипсу в его точке :

.

 

 


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.