Диссоциация комплексных соединений. Устойчивость комплексов. Лабильные и инертные комплексы — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Диссоциация комплексных соединений. Устойчивость комплексов. Лабильные и инертные комплексы

2017-12-09 333
Диссоциация комплексных соединений. Устойчивость комплексов. Лабильные и инертные комплексы 0.00 из 5.00 0 оценок
Заказать работу

При растворении в воде комплексных соединений, обычно они распадаются на ионы внешней и внутренней сфер подобно cильным электролитам, так как эти ионы связаны ионогенно, в основном, электростатическими силами. Это оценивается как первичная диссоциация комплексных соединений.

K [ Ag(CN) 2 ] ® К + + [ Ag(CN) 2 ]

Вторичная диссоциация комплексного соединения – это распад внутренней сферы на составляющие ее компоненты. Этот процесс протекает по типу слабых электролитов, так как частицы внутренней сферы связаны неионогенно (ковалентной связью). Диссоциация носит ступенчатый характер:

[Ag(CN)2] [AgCN] + CN 1 ступень
[AgCN] Ag+ + CN 2 ступень

Для качественной характеристики устойчивости внутренней сферы комплексного соединения используют константу равновесия, описывающую полную ее диссоциацию называемую константой нестойкости комплекса (Кн). Для комплексного аниона [ Ag(CN)2 ] выражение константы нестойкости имеет вид:

[ Ag+ ] [ СN ] 2

Кн = ——————

[ Ag(СN)2 ]

Чем меньше значение Кн, тем более устойчивой является внутренняя сфера комплексного соединения, то есть – тем меньше она диссоциирует в водном растворе. В последнее время вместо Кн используют значение константы устойчивости (Ку). Чем больше значение Ку, тем более стабильный комплекс.

Ку = ——

Кн

ПРИМЕНЕНИЕ КОМПЛЕКСОНОВ И КОМПЛЕКСОНАТОВ В МЕДИЦИНЕ

Вещества, устраняющие последствия воздействия ядов на биологические структуры и инактивирующие яды, посредством химических реакций, называют антидотами.

Один из первых антидотов, который применили в хелатотерапии является британский антилюизит:

СН 2 — СН — СН 2

SH SH ОН

В настоящее время применяют унитиол. Этот препарат эффективно выводит из организма мышьяк, ртуть, хром и висмут. Наиболее широко используют при отравлении цинком, кадмием, свинцом и ртутью комплексоны и комплексонаты. Применение их основано на образовании более прочных комплексов с ионами металлов, чем комплексы этих же ионов с серосодержащими группами белков, аминокислот и углеводов. Для выведения свинца используют препараты на основе ЭДТА. Введение в организм в больших дозах препаратов опасно, так как они связывают ионы кальция, что приводит к нарушению многих функций. Поэтому применяют тетацин, CaNa2 ЭДТА, который используют для выведения свинца, кадмия, ртути, итрия, церия и др. редкоземельных металлов и кобальта.

Ионы токсиканты вытесняют кальций из тетацина в связи с образованием более прочных связей с кислородом и ЭДТА:

 
   


Pb2+ + CaNа2 ЭДТА —— PbNa2 ЭДТА + Са2+

Электролиз

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный[1]. Положительные ионы — катионы — (ионы металлов,водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений[ источник не указан 747 дней ], диоксида марганца[2], пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование).

Электролиз в промышленности. Важнейшее применение электролиз находит в металлургической и химической промышлен­ности и в гальванотехнике.

В металлургической промышленности электролизом расплав­ленных соединений и водных растворов получают металлы, а так же производят электролитическое рафинирование — очистку ме­таллов от вредных примесей и извлечение ценных компонентов.

Электролизом расплавов получают металлы, имею­щие сильно отрицательные электродные потенциалы, и некоторые их сплавы.

При высокой температуре электролит и продукты электролиза могут вступать во взаимодействие друг с другом, с воздухом, а также с материалами электродов и электролизера. В результате этого простая, в принципе, схема электролиза (например, электро­лиз MgCb при получении магния) усложняется.

Электролитом обычно служат не индивидуальные расплавлен­ные соединения, а их смеси. Важнейшим преимуществом смесей является их относительная легкоплавкость, позволяющая прово­дить электролиз при более низкой температуре.

Электролитическое выделение металла из раствора называется электроэкстракцией. Руда или обогащенная руда—кон­центрат (см. § 192)—подвергается обработке определенными ре­агентами, в результате которой металл переходит в раствор. После очистки от примесей раствор направляют на электролиз. Металл выделяется на катоде и в большинстве случаев характеризуется высокой чистотой. Этим методом получают главным образом цинк, медь и кадмий.

Электролитическому рафинированию металлы подвергают для удаления из них примесей и для перевода содер­жащихся в них компонентов в удобные для переработки продукты. Из металла, подлежащего очистке, отливают пластины и поме­щают их в качестве анодов в электролизер. При прохождении тока металл подвергается анодному растворению — переходит в виде катионов в раствор. Далее катионы металла разряжаются на ка­тоде, образуя компактный осадок чистого металла. Содержащиеся в аноде примеси либо остаются нерастворенными, выпаДая в виде анодного шлама, либо переходят в электролит, откуда пе­риодически или непрерывно удаляются.

 

Рассмотрим в качестве примера электрорафинирование меди. Рсновным компонентом раствора служит сульфат меди — наибо­лее распространенная и дешевая соль этого металла. Но раствор,(puSC>4 обладает низкой электрической проводимостью. Для ее уве­личения в электролит добавляют серную кислоту. Кродое того, в раствор вводят небольшие количества добавок, способствующих Получению компактного осадка металла.

Металлические примеси, содержащиеся в неочищенной («чер­новой») меди, можно разделить на две группы:

1) Fe, Zn, Ni, Со. Эти металлы имеют значительно более отри­цательные электродные потенциалы, чем медь. Поэтому они анод- но растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите. В связи с этим электролит периоди­чески подвергают очистке.

2) Au, Ag, Pb, Sn. Благородные металлы (Аи, Ag) не претерпе­вают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который пе­риодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соедине­ния, выпадающие в осадок и также удаляемые.

Электролитическому рафинированию подвергают медь, никель, свинец, олово, серебро, золото.

К гальванотехнике относятся гальваностегия и гальванопласти­ка. Процессы гальваностегии представляют собой нанесение путем электролиза на поверхность металлических изделий слоев других металлов для предохранения этих изделий от коррозии, для придания их поверхности твердости, а также в декоративных целях. Из многочисленных применяемых в технике гальванотехни­ческих процессов важнейшими являются хромирование, цинкова­ние и никелирование.

Сущность гальванического нанесения покрытий состоит в сле­дующем. Хорошо очищенную и обезжиренную деталь, подлежащую защите, погружают в раствор, содержащий соль того металла, ко­торым ее необходимо покрыть, и присоединяют в качестве катода к цепи постоянного тока; при пропускании тока на детали осаж­дается слой защищающего металла. Наилучшая защита обеспечи­вается мелкокристаллическими плотными осадками. Такие осадки обладают, кроме того, лучшими механическими свойствами.

Гальванопластикой называются процессы получения точных металлических копий с рельефных предметов электроосаж­дением металла. Путем гальванопластики изготовляют матрицы для прессования различных изделий (граммофонных пластинок, пуговиц и др.), матрицы для тиснения кожи и бумаги, печатные радиотехнические схемы, типографские клише. Гальванопластику открыл русский академик Б. С. Якоби (1801—1874) в тридцатых годах XIX века.

К гальванотехнике относятся также другие виды электрохими­ческой обработки поверхности металлов: электрополирование стали, оксидирование алюминия, магния. Последнее представляет собой анодную обработку металла, в ходе которой определенным образом изменяется структура оксидной пленки на его поверхно­сти. Это приводит к повышению коррозионной стойкости металла. Кроме того, металл приобретает при этом красивый внешний вид.

Механизм К. м. определяется прежде всего типом агрессивной среды. В сухих окислит. газах при повыш. т-рах на пов-сти большинства конструкц. металлов образуется слой твердых продуктов коррозии (окалина). При условии сплошности этого слоя скорость К. м. чаще всего лимитируется диффузией через него ионов металла к границе слой - газ или окислителя (напр., О2-) к границе слой-металл (подробнее см. Газовая коррозия). Иной механизм имеет очень распространенная К. м. в электролитич. средах - р-рах электролитов (в т.ч. в виде тонких пленок на пов-сти металла), пропитанных электролитами пористых и капиллярно-пористых телах (почвы, бетоны, нек-рые изоляц. материалы, рыхлые отложения и др.), а также в расплавах электролитов. В таких средах суммарный процесс К. м. можно записать в виде р-ции:
М+Ох=Мz++Red, (1)
где М - металл. Ох - частица окислителя. Red - его восстановл. форма (Ох имеет заряд +ze или Red - заряд -zе); здесь для упрощения принято равенство всех стехиометрич. коэффициентов. В преобладающем большинстве случаев р-ция (1) протекает по т. наз. электрохим. механизму: атом М и частица Ох непосредственно не контактируют, передача электронов от М к Ох происходит через зону проводимости М (рис. 1,а). Т. обр., процесс (1) фактически состоит из двух р-ций: анодного растворения металла и катодного восстановления окислителя:
М=Mz++ze, (la) Ох+ze = Red. (16)
Скорость каждой из р-ций м. б. определена соответствующим кинетич. ур-нием (см. Электрохимическая кинетика)и в этом смысле они полностью независимы, но при совместном протекании р-ции связаны условием электронейтральности системы. В нек-рых случаях возможно влияние продуктов одной р-ции на скорость другой.

Рис. 1. Механизмы коррозии металлов: электрохимический (а); электрохимическо-химический (6);каталитический (в); предполагаемый химический (г).Для механизмов "6" и "в" принято зарядовое число z=2.

В электролитич. среде с высокой электрич. проводимостью (металлич. пов-сть можно рассматривать как эквипотенциальную, т.е. имеющую одинаковый во всех точках электродный потенциал Е.Последний при стационарном протекании электрохим. К. м. принимает, как правило, определенное значение Eкор, при к-ром одинаковы скорости анодной и катодной р-ций, обычно выражаемые в единицах плотности тока и обозначаемые ia и iк соответственно. Потенциал Eкoрназ. потенциалом коррозии или стационарным потенциалом; соответствующая ему величина плотности тока
ia=iк=iкор (2)
наз. скоростью или током коррозии. К. м. всегда необратимый процесс, поэтому значение Eкор не м. б. определено на основании термодинамич. соотношений и вычисляется только из кинетич. ур-ний р-ций (1а) и (16). В общем случае значения ia и iк зависят от потенциала Eэкспоненциально; эти зависимости в упрощенной записи имеют вид:
iа=kаехр(2,303Е/ba), (За) iк=kкcOxeхр(-2,З0ЗЕ/bк), (3б)
где cOx - концентрация окислителя Ох; ka и kк - эмпирич. постоянные при данной т-ре, к-рые, однако, могут зависеть от состава среды (kкне зависит от с); baи bк - постоянные Тафеля (см. Тафеля уравнение)для анодной и катодной р-ций соответственно. В координатах E-lgi зависимости (За) и (36) изображаются прямыми линиями (рис. 2, А). точке пересечения к-рых отвечают величины Екори iкор. При этом из (За) и (36) следует:


Рис. 2.Зависимость скорости i анодного растворения металла (l a) и катодного восстановления окислителя (1б) от электродного потенциала Е при элсюрохпм механизме коррозии. А - катодный процесс протекает в истино кинeтч. режиме. Б в режиме предельного диффузионного тока. iкор и Eкор значения тока и потенциала коррозии соотв.. iд - предельный диффузионный ток.

Ур-ния (За) и (36) отражают, в частности, кинетику типичной для неокислит. кислых сред электрохим. К. м. с восстановлением. Н+ - ионов; в водных р-рах р-ция (16) имеет вид: 2Н3О++2е=Н2 +2О. Если для анодной р-ции выполняется ур-ние (За), а скорость катодной р-ции полностью определяется диффузионным подводом Ох к пов-сти М, то величина iк максимальна в режиме предельного диффузионного тока i д (рис. 2, Б);в этом случае ik=iд=iкор и Eкop=balg(iдka-1). (5) Соотношение (5) характерно для распространенной в нейтральных и нек-рых др. средах электрохим. коррозии с восстановлением растворенного кислорода, в водных р-рах р-ция (16) имеет вид:
О2+2Н2О+4е=4ОН-.
В большинстве случаев распределение на пов-сти металла точек мгновенного протекания р-ций (1а) и (1б) изменяется во времени статистически беспорядочно; соотв. средняя по времени скорость анодной р-ции (а значит. и скорость К. м.) в любой точке пов-сти одинакова и совпадает со скоростью катодной р-ции (равномерная или сплошная К. м.). Гетерогенность металла или среды, разл. условия подвода окислителя или отвода продуктов коррозии, не нарушая эквипотенциальноети пов-сти (при высоких значениях (), могут приводить к возникновению на ней участков устойчивого предпочтительного протекания одной из р-ций - (1а) или (16), в соответствии с локальными значениями kа и ba, k к, b ки с (или iд). Для таких участков уже не выполняется равенство (2), т. с. iaik, а в предельном случае на одних участках со скоростью iа протекает практически только анодная р-ция, на других, со скоростью iк, - только катодная. Требование электронейтральности системы приводит к условию: iaSa=iкSк, где S. и Sк - суммарные площади "анодных" и "катодных" участков соответственно. Чем больше значения iк и Sк/Sa, тем интенсивнее локальное растворение металла на анодных участках (в отсутствие пассивации). При возрастании такой предпочтит. локализации, как правило, возрастает опасность локальных коррозионных разрушений, к-рая в реальных условиях чаще всего превосходит опасность для системы равномерной К. м. Причины описанной локальной К. м. многообразны: различия в составе зерна металла в объеме и на границе, концентрациях мех. напряжений, микровключения, разная природа контактирующих металлов, диффузионная неравнодоступность участков пов-сти и др. Участки пов-сти металла, на к-рых наблюдаются повыш. значения iа, м. б. макро- или микроскопическими. Первые наблюдаются обычно при контактной коррозии в месте соед. разнородных металлов, при щелевой коррозии (внутрищелевая пов-сть - анод, открытая - катод), на поздних стадиях питтинговой коррозии (питтинги в виде крупных язв); вторые - при межкристаллитной коррозии и на ранних стадиях питтинговой коррозии. Рост коррозионных трещин (см. Коррозия под напряжением) в ряде случаев объясняют тем, что анодный процесс локализуется в вершине (острие) трещин. В электролитич. среде с малой электрич. проводимостью (за счет неоднородности металла или среды протяженная металлич. пов-сть м. б. неэквипотенциальной, т. е. для такой пов-сти характерно не одно значение Eкор, а нек-рое распределение потенциала. За исключением простейших по своей геометрии систем, теоретич. построение распределений потенциала и токов iа и iк при постоянстве (требует решения дифференц. ур-ния Лапласа с разл. краевыми условиями. Однако кинетич. закономерности электрохим. К. м. и для такой пов-сти остаются справедливыми. Искомые распределения потенциала м. б. найдены указанным способом лишь при известных для каждого участка пов-сти значениях kа и bа, kк, bки с (или iд). Осн. электрохим. механизм К. м., выражаемый ур-ниями (1а) и (16), может иметь варианты. Р-ция (1а) при z/2может протекать через одноэлсктронныс стадии, напр. при z= 2:
М=М+ + е, (6а)
М+2++е. (6б) Катион промежут. валентности М+ в нск-рых случаях настолько устойчив, что может вступать в хим. р-цию
++Ох=2М2++Red (7)
прежде, чем успевает произойти его электрохим. анодное доокисление по р-ции (6б). Если при этом одновременно протекает р-ция (16), реализуется т. наз. электрохимическо-хим. механизм, при к-ром К. м. обусловлена электрохим. р-циями (6а) и (6б) и хим. р-цией (7) (рис. 1,6). Если на металлич. пов-сти вместо окислителя Ох, к-рый из-за р-ции (7) не достигает ее, восстанавливаются катионы М2+2++е=М+, рис. 1, в), осуществляется т. наз. каталитич. механизм К. м., при к-ром М+ играет роль катализатора р-ции (1). Эти варианты электрохим. механизма возможны в водных средах, но м. б. наиболее существенными при К. м. в орг. средах. Для таких сред, обычно характеризующихся малыми значениями (, ранее считалось обязательным протекание К. м. по т. наз. хим. механизму, когда передача всех z электронов от М к Ох происходит непосредственно, в одном элементарном акте (рис. 1, г). В действительности же для электрохим. К. м. объемная величина х не имеет принципиального значения, по этому механизму протекает К. м. во многих малоэлектропроводных орг. средах; возможность хим. механизма сейчас допускают лишь для р-ров на основе неполярных р-рителей. В то же время в электропроводных водных р-рах (кислых и слабокислых) для ряда металлов при электродных потенциалах более отрицательных, чем Eкор (а при повыш. т-рах - и вблизи Eкор), скорость растворения не зависит от Е(участок MNна кривой а, рис. 2), причем этот эксперим. факт не м. б. объяснен диффузионными ограничениями. Одной из возможных причин его существования считают протекание р-ции (1) по хим. механизму. Классификация К. м. определяется конкретными особенностями среды и условиями протекания процесса (подводом окислителя, агрегатным состоянием и отводом продуктов коррозии, возможностью пассивации металла и др.). Обычно выделяют К. м. в природных средах - атмосферную коррозию, морскую коррозию, подземную коррозию, биокоррозию; нередко особо рассматривают К. м. в пресных водах (речных и озерных), гсотeрмальных, пластовых, шахтных и др. Еще более многообразны виды К. м. в техн. средах; различают К. м. в к-тах (неокислительных и окислительных), щелочах, орг. средах (напр., смазочноохлаждающих жидкостях, маслах, пищ. продуктах и др.), бетоне, расплавах солей, оборотных и сточных водах и др. По условиям протекания наряду с контактной и щелевой К. м. выделяют коррозию по ватерлинии, коррозию в зонах обрызгивания, переменного смачивания, конденсации кислых паров; радиационную К. м., коррозию при теплопередаче, коррозию блуждающими токами и др. Особую группу образуют коррозионномех. разрушения, в к-рую входят помимо коррозионного растрескивания и коррозионной усталости фреттинг - коррозия, водородное охрупчивание, эрозионная коррозия (в пульпах и суспензиях с истирающими твердыми частицами), кавитационная коррозия (при одноврем. воздействии агрессивной среды и кавитации). В общем случае воздействие агрессивной среды и мех. факторов на разрушение неаддитивно. Напр., при эрозионной К. м. потери металла вследствие разрушения защитной пленки м. 6. намного больше суммы потерь от эрозии и К. м. по отдельности. Часто К. м. классифицируют также по отдельным металлам и их группам, по конкретным отраслям, произ-вам и объектам. Коррозией часто наз. также происходящие при взаимод. со средами процессы разрушения неметаллич. материалов - полупроводников, бетона, полимеров, стеклопластиков и др. Представления о К. м., коррозионностойких материалах и защите от коррозии, коррозионных испытаниях, проводимых при разработках и выборе материалов и ср-в защиты, выделяются в самостоят, научно-техн. дисциплину - химическое сопротивление материалов.

Защита металла от коррозии

Существует множество различных состояний поверхности металла, требующих защиты от коррозии. Возраст объекта и его расположение, качество поверхности, степень разрушения металла, количество дефектов, тип предыдущих и будущих агрессивных условий, свойства старого покрытия — все эти факторы влияют на подготовку поверхности и выбор системы защиты металла от коррозии.

Компания КрасКо предлагает целую серию лакокрасочных материалов, специально предназначенных для защиты металла от коррозии.

Нержамет — краска по ржавчине, антикоррозионная эмаль «три в одном». Эмаль наносится прямо на ржавчину. Предназначается для окраски как чистых, так и ржавых металлических поверхностей, ржавого металла.

Полимерон — износостойкая спецэмаль, антикоррозионное покрытие. Эмаль специально разработана для защиты металлических поверхностей в условиях тяжёлой промышленной атмосферы.

Сереброл — алюминиевая краска, серебристо-белая антикоррозионная эмаль. Применяется для окраски любых металлоконструкций, эксплуатирующихся во влажной атмосфере, в условиях морской и пресной воды.

Нержалюкс — антикоррозионная эмаль для цветных металлов. Применяется для окраски алюминиевых и оцинкованных поверхностей, любых других поверхностей из цветных металлов.

Цикроль — краска для крыш, краска по оцинковке. Краска применяется для окраски оцинкованной кровли, оцинкованного металла, кровельного железа, кровельной жести, металлочерепицы, водостоков, желобов, перил и других оцинкованных поверхностей.

Нержапласт — эмаль жидкая пластмасса. Образует на поверхности декоративное покрытие с эффектом пластика (жидкий пластик).

Молотекс — кузнечная краска, декоративная краска с рисунчато-молотковым эффектом.

Полиуретол — маслобензостойкая грунт-эмаль, полиуретановая двухкомпонентная эмаль.

Фосфогрунт — фосфатирование металла, антикоррозионный грунт для чёрных и цветных металлов.

Цинконол — цинконаполненный грунт, антикоррозионный грунт-протектор. Холодное цинкование металла.

Фосфомет — преобразователь ржавчины, фосфатирующий модификатор ржавчины.

Общая хар 7 группы


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.032 с.