Алгоритм вычисления обратной матрицы. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Алгоритм вычисления обратной матрицы.

2017-12-12 382
Алгоритм вычисления обратной матрицы. 0.00 из 5.00 0 оценок
Заказать работу

1. Находим определитель исходной матрицы. Если, то матрица - вырожденная и обратной матрицы не существует. Если , то матрица невырожденная и обратная матрица существует.

2. Находим матрицу, транспонированную к.

3. Находим алгебраические дополнения элементов и составляем из них присоединенную матрицу .

4. Составляем обратную матрицу по формуле .

5. Проверяем правильность вычисления обратной матрицы , исходя из ее определения: .

Пример. Найти матрицу, обратную данной: .

Р е ш е н и е.

1) Определитель матрицы

.

2) Находим алгебраические дополнения элементов матрицы и составляем из них присоединенную матрицу :

 

.

3) Вычисляем обратную матрицу:

,

4) Проверяем:

.

 

4. Система п линейных уравнений с п переменными (общий вид). Матричная форма записи такой системы. Решение системы (определение). Совместные и несовместные, определенные и неопределенные системы линейных уравнений.

Решение системы линейных уравнений с неизвестными

Системы линейных уравнений находят широкое применение в экономике.

Система линейных уравнений с переменными имеет вид:

,

где () - произвольные числа, называемые коэффициентами при переменных и свободными членами уравнений, соответственно.

Краткая запись: ().

Определение. Решением системы называется такая совокупность значений , при подстановке которых каждое уравнение системы обращается в верное равенство.

1) Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

2) Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

3) Две системы уравнений называются равносильными (эквивалентными), если они имеют одно и то же множество решений (например, одно решение).

Запишем систему в матричной форме:

Обозначим:, где

А – матрица коэффициентов при переменных, или матрица системы, Х – матрица-столбец переменных, В – матрица-столбец свободных членов.

Т.к. число столбцов матрицы равно числу строк матрицы, то их произведение:

Есть матрица-столбец. Элементами полученной матрицы являются левые части начальной системы. На основании определения равенства матриц начальную систему можно записать в виде:.

Теорема Крамера. Пусть - определитель матрицы системы, а - определитель матрицы, получаемой из матрицы заменой -го столбца столбцом свободных членов. Тогда, если , то система имеет единственное решение, определяемое по формулам:

, - формула Крамера.

Пример. Решить систему уравнений по формулам Крамера

Р е ш е н и е. Определитель матрицы системы . Следовательно, система имеет единственное решение. Вычислим , полученные из заменой соответственно первого, второго, третьего столбцов столбцом свободных членов:

По формулам Крамера:

.

5. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.

Метод Гаусса - метод последовательного исключения переменных.

Метод Гаусса заключается в том, что с помощью элементарных преобразований строк и перестановок столбцов система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Преобразования Гаусса удобно проводить не с самими уравнениями, а с расширенной матрицей их коэффициентов , получаемой приписыванием к матрице столбца свободных членов :

.

Следует отметить, что методом Гаусса можно решить любую систему уравнений вида .

Пример. Методом Гаусса решить систему:

Выпишем расширенную матрицу системы.

Шаг 1. Поменяем местами первую и вторую строки, чтобы стал равным 1.

Шаг 2. Умножим элементы первой строки на (–2) и (–1) и прибавим их к элементам второй и третьей строк, чтобы под элементом в первом столбце образовались нули.

Шаг 3. Умножим элементы третьей строки на (–0,5).

Шаг 4. Поменяем местами вторую и третью строки.

Шаг 5. Поменяем местами второй и третий столбец. (Шаги 3, 4, 5 приведены с тем, чтобы ).

Шаг 6. Элементы второй строки умножим на 3 и прибавим их к элементам третьей строки, тогда под элементом появится нуль.

(называется расширенная матрица системы) .

Расширенная матрица приведена к треугольному виду. Соответствующая ей система имеет вид:

Из последнего уравнения ; из второго ; из первого .

Таким образом, , , .

6. Решение систем п линейных уравнений с п переменными с помощью обратной матрицы (вывод формулы Х=А –1 В).

Для получения решения системы при в общем виде предположим, что квадратная матрица системы невырожденная, т.е. ее определитель . В этом случае существует обратная матрица .

Метод обратной матрицы.

Запишем систему в матричной форме:

, где

- матрица коэффициентов при переменных,

- матрица-столбец переменных; - матрица столбец свободных членов.

 

Умножим слева обе части равенства на матрицу :

;

;

;

.

Таким образом, решение системы в матричном виде .

Пример. Решить систему уравнений методом обратной матрицы.

Р е ш е н и е: Обозначим ; ; .

Тогда в матричной форме система имеет вид: . Определитель матрицы , т.е. обратная матрица существует: .

Определим ,

Существенным недостатком решения систем линейных уравнений с переменными по формулам Крамера и методом обратной матрицы является их большая трудоемкость, связанная с вычислением определителей и нахождения обратной матрицы.

 

7. Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода).

Теорема Крамера. Пусть - определитель матрицы системы, а - определитель матрицы, получаемой из матрицы заменой -го столбца столбцом свободных членов. Тогда, если, то система имеет единственное решение, определяемое по формулам:

, ().

В соответствии с обратной матрицей, где - матрица, присоединенная к матрице. Т.к. элементы матрицы есть алгебраические дополнения элементов матрицы, транспонированной к, то запишем равенство в развернутой форме:

.

Учитывая, что, получим после умножения матриц:

, откуда следует, что для любого.

На основании свойства 9 определителей, где - определитель матрицы, полученной из матрицы заменой -го столбца столбцом свободных членов. Следовательно .

 

Решение системы линейных уравнений с неизвестными

Рассмотрим систему линейных уравнений с неизвестными.

Теорема Кронекера-Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы: .

Для совместных систем линейных уравнений верны следующие теоремы:

Теорема 1. Если ранг матрицы совместной системы равен числу переменных, т.е. , то система имеет единственное решение.

Теорема 2. Если ранг матрицы совместной системы меньше числа переменных, т.е. , то система является неопределенной и имеет бесконечное множество решений.

Определение. Базисным минором матрицы называется любой ненулевой минор, порядок которого равен рангу матрицы.

Определение. Те неизвестных, коэффициенты при которых входят в запись базисного минора, называются базисными (или основными), остальные неизвестных называются свободными (или неосновными).

Решить систему уравнений в случае - это значит выразить базисные переменные через свободные. При этом имеем общее решение системы уравнений. Если все свободные переменные равны нулю, то решение системы называется базисным.

Пример. Решить систему методом Гаусса:

Р е ш е н и е. Выпишем и преобразуем расширенную матрицу системы. Сначала прибавим к элементам третьей строки элементы первой строки, умноженные на –1. А затем элементы второй строки умножим на –1 и прибавим к элементам третьей строки:

 

.

Расширенная матрица приведена к ступенчатому виду.

. Так как ранг матрицы равен 2, а количество неизвестных равно 4, то система имеет бесконечное множество решений. В качестве базисных неизвестных возьмем и (т.к. определитель, составленный из их коэффициентов не равен нулю ), тогда и - свободные неизвестные.

Выразим базисные переменные через свободные.

Из второй строки полученной матрицы выразим переменную :

, .

Из первой строки выразим : ,

.

Общее решение системы уравнений: , .

8. Понятие функции, способы задания функций. Область определения. Четные и нечетные, ограниченные, монотонные функции. Примеры.


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.056 с.