Виды взаимодейств лс : фармацептическое,фармокинетическое,фармакодинамическое. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Виды взаимодейств лс : фармацептическое,фармокинетическое,фармакодинамическое.

2017-12-10 291
Виды взаимодейств лс : фармацептическое,фармокинетическое,фармакодинамическое. 0.00 из 5.00 0 оценок
Заказать работу

• фармацевтическое — до введения в организм;

• фармакокинетическое — на различных стадиях ФК ЛС (всасывание, связь с белками, распределение, биотрансформация, выведение);

• фармакодинамическое — на этапе взаимодействия ЛС с рецепторами (конкуренция за рецептор или изменение его чувствительности на нейромедиаторы).

Фармацевтическое взаимодействие. Происходит в результате физико-химических реакций ЛС при совместном их применении (щелочей и кислот). В результате фармацевтического взаимодействия может образовываться осадок, возникать изменение растворимости, цвета, запаха, а также основных фармакологических свойств ЛС. Наиболее частое взаимодействие появляется при использовании нерациональных прописей (в микстурах, сложных порошках).

Нередко ЛС вступают во взаимодействие в инфузионных растворах (несовместимость). Основным фактором, вызывающим несовместимость, служит изменение рН. На стабильность раствора влияет также концентрация находящихся в нем препаратов (чем больше концентрация ампициллина, тем более стабилен его раствор).

Общие рекомендации:

• не следует добавлять препараты к крови, растворам аминокислот или жировым эмульсиям;

• при отсутствии специальной информации препараты следует растворять в глюкозе, изотоническом растворе натрия хлорида или их смеси. Кислотность 0,9 % раствора натрия хлорида (рН 4,5-7) связана с присутствием в нем растворенного СО2, а 5 % раствора глюкозы (рН 3,5-6,5) с продуктами распада глюкозы, появляющимися в процессе стерилизации и хранения. Буферная способность этих растворов очень ограничена, поэтому при добавлении ЛС их рН может изменяться;

• взаимодействие может происходить без видимых изменений раствора, что позволяет ошибочно думать, что оно не происходит и раствор сохраняет свою активность;

• все растворы следует готовить непосредственно перед употреблением; запасать их нельзя;

• состав готового инфузионного раствора следует предварительно изучить по прилагаемой инструкции, т.к. это не только ЛС, но и стабилизатор, консервант, растворитель и др. и каждый из ингредиентов может стать источником взаимодействия;

Фармакокинетическое взаимодействие развивается, когда одно ЛС изменяет процесс всасывания, распределения, связывания с белками, метаболизм н выведение другого ЛС. Результатом фармакокинетического взаимодействия считают изменение концентрации ЛС в области специфических рецепторов и, следовательно, фармакологического эффекта.

Взаимодействие препаратов в месте введения до начала его всасывания

Взаимодействие ЛС при всасывании в ЖКТ может происходить в любом его отделе, но чаще в желудке или тонкой кишке. Основное значение для клинического эффекта имеет изменение скорости и полноты всасывания.

Самое простое взаимодействие происходит между ЛС и жидкостями, которыми их запивают. Установлено, что если принимать ЛС с количеством жидкости, превышающим 200 мл, то всасывание ЛС в кишечнике происходит значительно быстрее, чем препаратов, принятых с количеством воды менее 25 мл. Этот факт объясняют тем, что растворённое в жидкости гидрофильное ЛС распределяется на большей площади кишечного эпителия и лучше адсорбируется на протяжении всей тонкой кишки.

ЛС также взаимодействуют с компонентами пищи - может возникать замедление, ускорение и нарушение всасывания ЛС в кишечнике. Замедление всасывания обусловлено тем, что препарат (парацетамол, фуросемид, фенобарбитал, эритромицин), смешиваясь с пищей, всасывается менее интенсивно.

К ЛС, всасывание которых уменьшается, если их принимают после еды, относят, например, ампициллин, тетрациклин, напроксен, АСК, каптоприл, доксициклин. Одна из причин снижения абсорбции ЛС, имеющих кислый рН, — инактивация в щелочной среде кишечника, особенно во время пищеварения. Уменьшение абсорбции тетрациклина, поступившего в ЖКТ после приема пищи, особенно содержащей ионы Са, Fe, объясняется его связыванием с ионами металлов и образованием нерастворимых хелатных соединений, плохо всасывающихся в кишечинике.

Однако в ряде случаев при приёме препарата после еды повышается его концентрация в плазме крови. В основном это касается ЛС, метаболизируемых в печени при первом прохождении (анаприлин, метапролол, нитрофурантоин, спиронолактон, рибофлавин).

И, наконец, существует ряд препаратов (метронидазол, ннтразепам, оксазепам, преднизолон, хлорпропамид), на всасывание которых приём пищи не влияет. Всасывание ЛС может измениться под влиянием других ЛС..

Двигателъная активность кишечника. Всасываемость ЛС зависит не только от их свойств. Можно ожидать, что изменения двигательной активности ЖКТ может влиять на скорость и степень всасывания в целом, особенно некоторых препаратов.

Влияние на всасывание ЛС, замедляющих опорожнение желудка и моторику кишечника (холиноблокаторы, ТАД), увеличивает скорость всасывания других ЛС, особенно медленно и неполно абсорбирующихся в ЖКТ (противоаритмических препараты).

В свою очередь усиление перистальтики часто обусловливает уменьшение всасывания ЛС, например слабительные средства снижают всасываемость дигоксина.

При замедлении эвакуации из желудка большее количество леводопы подвергается метаболизму и, следовательно, меньшее количество всасывается в кишечнике с участием активных транспортных систем.

Кортикостероиды и дигоксин растворяются с трудом, поэтому быстрое прохождение по кишечнику может уменьшить количество всосавшегося препарата.

Взаимодействие в процессе всасывания.

Некоторые ЛС (фенформин, мефенамовая кислота), токсически воздействуя на слизистую оболочку ЖКТ, могут нарушать всасывание других препаратов, а также некоторых ингредиентов пищи.

Уменьшение кровоснабжения ЖКТ (при острой или хронической сердечной недостаточности) может нарушить всасывание ЛС, поэтому назначение ЛС, улучшающих гемодинамику (сердечные гликозиды, диуретики), может повысить всасывание других препаратов.

Сосудосуживающие средства (адреналин) добавляют к местноанестезирующим препаратам с целью замедления всасываемости и пролонгирования анестезии.

Взаимодействие препаратов в организме после их всасывания:

Связывание с белками.

• ЛС могут взаимодействовать непосредственно в плазме (протамин и гепарин, деферроксамин и железо, димеркапрол и мышьяк);

• Взаимодействие за места связи с белками плазмы. При использовании двух и более ЛС, одно из которых обладает меньшим сродством к белку, происходит его вытеснение. Если препарат активен, то он может вытеснить ранее введенное ЛС из мест связи с белками, и тогда концентрация свободной фракции первого препарата увеличивается с усилением фармакологической активности (салицилаты, бутадион, клофибрат вытесняют из связи с белком антикоагулянты непрямого действия и увеличивают частоту внутренних кровотечений);

Если ЛС, вытесненное из связи с белком, распределится в большом объеме, тогда увеличение концентрации в плазме его свободной фракции не столь существенно (имипрамин (имизин) связывается с белками на 95%, но у него большой объем распределения (100 л/70 кг), поэтому взаимодействие с другими ЛС, вытесняющими его из мест связи с белками, не имеет существенного значения. Однако проблемы могут возникнуть с НПВС, т.к. они находятся в крови преимущественно в связанном состоянии и отличаются небольшим объемом распределения.

Нежелательные эффекты чаще развиваются, если вытесняющий препарат применяют прерывисто или в разных дозах, и будут особенно выражены, если требуется тщательно следить за концентрацией в плазме одного из препаратов. Клинически важные последствия могут быть, если из связи с белками вытесняются антикоагулянты или пероральные гипогликемические средства.

• Конкурентное вытеснение может происходить и на уровне тканевых белков. Хинидин вытесняет дигоксин из мест связи с ними. Кроме того, он нарушает экскрецию дигоксина почками, поэтому появляется риск повышенной токсичности дигоксина, если дополнительно назначают хинидин без соответствующего снижения дозы дигоксина.

Распределение.

ЛС, влияющие на кровоснабжение органов и тканей, могут нарушать распределение других препаратов (у больных с застойной ССН при назначении спазмолитических средств в сочетании с кардиотоническими возрастает эффект диуретиков).

ЛС, улучшающие реологические свойства крови (трентал, ксантинола никотинат, дипиридамол), уменьшая вязкость крови, агрегацию тромбоцитов и эритроцитов, способствуют изменению распределения ЛС в участках органов, ранее недоступных для действия ЛС вследствие нарушения микроциркуляции.

При интрабронхиальном введении ЛС больным с явлениями бронхоспазма наряду с применением специфических ЛС следует назначить β-адреностимуляторы, расширяющие бронхи и способствующие поступлению ЛС в нижние участки бронхиального дерева.

Вместе с тем взаимодействие ЛС может нарушить распределение ЛС, способствовать увеличению концентрации в одном участке и снижению в другом, что чревато не только уменьшением выраженности эффекта, но и возможностью развития побочных эффектов (применение спазмолитиков приводит к перераспределению кровотока и уменьшению доставки препарата в область, кровоснабжаемую склерозированным сосудом – синдром «обкрадывания»).

Метаболизм.

Известно более 300 ЛС, способных влиять на метаболизм в печени, угнетая или стимулируя активность гепатоцитов.

• индукция ферментов. Индукторами ферментов печени являются, снотворные средства (барбитураты, хлоралгидрат), транквилизаторы (диазепам, хлордиазепоксид, мепробамат), нейролептики (аминазин, трифтазин), противосудорожные (дифенин), противовоспалительные (бутадион амидопирин) средства, хлорированные инсектициды (дихлордифенилтрихлорэтан (ДДТ), пищевые добавки, алкоголь, кофе. В небольших дозах некоторые ЛС (фенобар6итал, бутадион, нитраты могут стимулировать собственный метаболизм (аутоиндукция).

При совместном назначении двух ЛС, одно из которых индуцирует печёночные ферменты, а второе метаболизируется в печени, дозу последнего необходимо увеличить, а при отмене индуктора — снизить. Классический пример такого взаимодействия — сочетание антикоагулянтов непрямого действия и фенобарбитала. Доказано, что в 14% случаев причина кровотечений при лечении антикоагулянтами — отмена ЛС, индуцирующих микросомальные ферменты печени

• взаимодействие ЛС на уровне метаболизма может реализовываться через изменение печёночного кровотока. Известно, что лимитирующие факторы метаболизма препаратов с выраженным эффектом первичной элиминации (пропранолол, верапамил и др.) — величина печёночного кровотока и в значительно меньшей степени активность гепатоцитов. В связи с этим любые ЛС, уменьшающие регионарное печёночное кровообращение, снижают интенсивность метаболизма данной группы препаратов и повышают их содержание в плазме крови.

Выведение из организма.

Главным механизмом взаимодействия ЛС в почках считают конкуренцию слабых кислот и слабых оснований за механизмы активного канальцевого транспорта. В связи с тем, что на степень ионизации вещества большое влияние оказывает кислотность раствора, колебания рН, вызываемые другими препаратами (повышение рН бикарбонатом натрия и снижение его аскорбиновой кислотой), могут существенно изменить выведение ЛС. Так, при щелочной реакции мочи увеличивается общий клиренс "кислых" препаратов (бутадиона, барбитуратов, САА). Поэтому при лечении САА для предупреждения развития их побочных эффектов (кристаллурия) рекомендовано щелочное питьё. Этот факт нередко используют на практике для лечения отравлений барбитуратами. Наоборот, выведение кодеина, морфина, новокаина возрастает при кислой реакции мочи.

Таким образом, результат взаимодействия ЛС в фармакокинетической фазе — изменение всасываемости, биодоступности, распределения, связи с белком, интенсивности метаболических процессов и выведения, что в конечном итоге обусловливает изменение концентрации препарата в крови.

Фармакокинетическое взаимодействие препаратов нередко бывает непредвиденным, так как фармакокинетика многих ЛС изучена ещё недостаточно.

Фармакодинамическое взаимодействие.

Взаимодействие в месте приложения действия. Все виды фармакодинамического взаимодействия осуществляются в местах действия ЛС. В результате фармакодинамического взаимодействия может происходить усиление или уменьшение как основного, так и побочного эффектов ЛС.

Взаимодействие на уровне специфического рецептора может быть продемонстрировано многочисленными примерами конкуренции за специфические рецепторы. Это, например, имеющие большое клиническое значение взаимоотношения избирательно действующих антагонистов: ацетилхолин и холиноблокаторы; α- и β-адреноблокаторы с катехоламинами.

Конкуренция за рецептор может происходить между ЛС однонаправленного (агонистами) и противоположно направленного (антагонистами) действия. Примером может служить одновременное или последовательное назначение α-адреноблокаторов и адреналина. На фоне блокады α-адренорецепторов, вызванной, например, фентоламином, адреналин вызывает не повышение АД, а его снижение.

Изменение фармакокинетики на уровне рецептора происходит из-за того, что одно ЛС может влиять на активный транспорт, местный метаболизм и связь другого ЛС с неспецифическими рецепторами. Одним из наиболее демонстративных клинических примеров считают – усиление анальгезии при сочетании сосудосуживающих средств и местных анестетиков. Резерпин нарушает депонирование катехоламинов, разрушаемых МАО, что приводит уменьшению их запаса. Ингибиторы МАО, подавляя разрушение катехоламинов, увеличивают концентрацию, что может привести к повышению АД.

Разновидность конкурентного взаимодействия за связь с рецептором — антагонизм между атропином, блокирующим М-холинорецепторы, и ингибиторами АХЭ, повышающими содержание АХ.

Взаимодействие может проявляться изменением чувствительности специфических рецепторов вследствие прямого (например, повышение чувствительности миокарда к адреналину во время фторотанового или циклопропанового наркоза) или опосредованного (уменьшение чувствительности миокарда к сердечным гликозидам в результате снижения содержания К, вызванного диуретиками)

Изменение кишечной микрофлоры, вызываемое противомикробными средствами, приводит к нарушению синтеза ими витамина К и тем самым потенцирует эффект антикоагулянтов непрямого действия.

Возможны неконкурентные взаимоотношения между ЛС.

Клинически важными нежелательным последствиями взаимодействия ЛС на уровне рецептора являются:

• снижение эффективности симпатолитиков под влиянием симпатомиметиков непрямого действия (большинство анорексигенных средств и трициклических антидепрессантов);

• повышение АД при одновременном применении левадопы и ингибиторов МАО;

• усиление эффектов симпатомиметиков, являющихся субстратом для МАО (фенилэфрин. мезатон, орципреналин, тирамин пищевого происхождения после применения ингибиторов МАО), так как вместо разрушения в стенке кишечника они быстро всасываются;

• трициклические антидепрессанты потенцируют действие катехоламинов;

• неомицин и стрептомицин вызывают нервно-мышечную блокаду и усиливают действие кураре, будучи их синергистами;

• мочегонные тиазидового ряда потенцируют действие кураре, возможно, в результате гипокалиемии.

Рациональные сочетания препаратов служат основой эффективной терапии при многих заболеваниях.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.023 с.