Биологически активные пептиды крови и тканей — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Биологически активные пептиды крови и тканей

2017-12-10 844
Биологически активные пептиды крови и тканей 0.00 из 5.00 0 оценок
Заказать работу

Помимо белков в организме человека присутствует большое количество пептидов, обладающих выраженными биологическими эффектами. Они образуются или путём биосинтеза из аминокислот, или путём частичного протеолиза белков-предшественников.

По биологической активности выделяют различные виды пептидов:

- пептиды – гормоны (окситоцин-гормон задней доли гипофиза, повышает тонус гладкой мускулатуры, кальцитонин – гормон паращитовидных желез, участвует в регуляции кальций - фосфорного обмена);

- пептиды, регулирующие тонус сосудов (вазопрессин- гормон задней доли гипофиза, обладает сосудосуживающим действием, брадикинин обладает сосудорасширяющим эффектом;

- пептиды, регулирующие функции желудочно-кишечного тракта (гастрин, секретин, мотилин);

- пептиды головного мозга, обладающие способностью связываться с опиатными рецепторами, с выраженным обезболивающим эффектом (эндорфины, энкефалины);

- пептиды мышечной ткани, повышающие работоспособность мышц (карнозин, ансерин).

Некоторые синтетические пептиды используются в качестве терапевтических средств. Например, пентагастрин – стимулятор желудочной секреции, тимоген – иммуностимулятор, даларгин – противоязвенный препарат,

Тесты

1. В состав природных белков входят химические элементы: Кальций. Углерод. Хлор. Водород. Натрий. Азот. Калий. Кислород. Сера.

2. Содержание белка в пробе можно довольно точно рассчитать по количественному определению химического элемента:

Углерод. Водород. Азот. Кислород. Сера.

3. К существенным изменениям биологических свойств белков ведут замены аминокислот:

Глютамат на аспартат. Глютамат на валин.Триптофан на глютамат. Валин на лейцин. Глицин на аспартат. Фенилаланин на триптофан. Серин на треонин. Глицин на аланин.

4. Об окончании гидролиза белка можно судить:

По растворению осадка денатурированного белка. По исчезновению мутности гидролизата. По положительной биуретовой реакции. По положительной нингидриновой реакции. По отрицательной нингидриновой реакции. По положительной реакции Адамкевича. По отрицательной биуретовой реакции.По результатам формольного титрования.

5. Третичную структуру белка стабилизируют связи:

Гидрофобные. Пептидные. Дисульфидные. Ионные. Водородные.

6. Вторичную структуру белков стабилизируют связи:

Дисульфидные. Пептидные. Ионные. Гидрофобные. Водородные.

7. Полярными функциональными группами белков являются:

Карбоксильные. Метильные. Фенольные. Аминные. Карбонильные. Индольные. Гидроксильные. Тиоловые. Иминные.

8. В образовании пептидной связи участвуют функциональные группы аминокислот:

Эпсилон-аминные. Альфа - аминные. Бета - карбоксильные. Гамма -карбоксильные. Альфа - карбоксильные. Тиоловые.

9. Основополагающей структурой, т.е. определяющей более высокие уровни структурной организации белка, является:

Первичная. Вторичная. Третичная. Четвертичная.

10. Выраженная видовая специфичность белков с одинаковыми природными биологическими свойствами обусловлена:

Принципиальными различиями в аминокислотном составе. Существенными различиями в молекулярной массе. Особенностями пространственной структуры молекул. При схожести первичных структур отдельными равноценными аминокислотными заменами. При схожести первичных структур отдельными неравноценными аминокислотными заменами. Различиями состава небелковых компонентов.

11. Преимущественно на поверхности белковой молекулы расположены аминокислоты:

Неполярные аминокислоты. Полярные аминокислоты. Обе группы аминокислот. Ни одна из этих групп

12. Преимущественно в глубине белковой молекулы расположены аминокислоты:

Неполярные аминокислоты. Полярные аминокислоты. Ни одна из этих групп. Обе группы аминокислот

13. В формировании 3-ой структуры белка участвуют:

Неполярные аминокислоты. Полярные аминокислоты. Обе группы аминокислот. Ни одна из этих групп

14. Причиной изменения сродства гемоглобина к кислороду является:

Изменение третичной структуры протомеров. Изменение взаиморасположения протомеров. Кооперативные изменения конформации протомеров

15. Верно ли данное положение?

Εпсилон - аминогруппа лизина участвует в образовании пептидной связи

Да. Нет. Верный ответ отсутствует

16. Верно ли данное положение?

Радикалы серина и валина обладают гидрофильными свойствами

Да. Нет. Верный ответ отсутствует

17. Шапероны участвуют главным образом в образовании и поддержании:

Первичной структуры белков. Третичной структуры белков. Вторичной структуры нуклеиновых кислот

18. Содержание белков в организме новорожденных детей составляет:

20%. 10-12%. 5%

Ситуационные задачи

1. На фрагменте пептида: Тир - Цис - Лей – Вал – Асп - Ала

назовите, радикалы каких аминокислот могут участвовать в образовании связей:

Гидрофобных. Ионных. Дисульфидных

2. На фрагменте пептида: Тир – Цис – Лей – Вал – Асп - Ала

укажите, в образовании каких уровней структурной организации белка участвуют связи, образованные радикалами данных аминокислот

3. В крови студента-африканца, поступившего в клинику с жалобами на одышку, головокружение, учащённое сердцебиение и боли в конечностях, в крови обнаружены эритроциты, имеющие форму серпа.

Объясните причину развития данного заболевания.

4. Гемоглобин представляет собой сложный олигомерный белок гемопротеид. Какие посттрансляционные изменения приводят к формированию функционально активного белка?

7. Основная и дополнительная литература к теме

Основная

Биохимия. Под ред. Е.С. Северина. 2003. С. 9-28, 31-56.

Биохимия. Краткий курс с упражнениями и задачами. 2001. С. 7- 25.

А.Я. Николаев Биологическая химия. 2004. С. 16-35,38-43.

О.Д. Кушманова. Руководство к лабораторным занятиям по биологической химии. 1983. С. 15-19, 19-24.

Лекционный материал

Дополнительная

Т.Т. Березов, Б.Ф. Коровкин. Биологическая химия. 1990. С. 10-41, 49-59.

Р. Марри и др. «Биохимия человека». М. «Мир». 1993. с. 21-51(1)

Ю.Е. Вельтищев, М.В. Ермолаев, А.А. Ананенко, Ю.А. Князев. «Обмен веществ у детей». М.: Медицина. 1983. 462 с.

Р.М. Кон, К.С. Рот. Ранняя диагностика болезней обмена веществ. М. «Медицина».- 1986.

Макаренко Т.Г., Стунжас Н.М. Учебно-методические пособия «Биохимические особенности детского организма». Смоленск. 2001. 2007.

Макаренко Т.Г., Стунжас Н.М. Учебное пособие, рекомендовано УМО «Особенности обмена веществ у новорожденных и грудных детей». Смоленск. 2012.

А.Е. Медведев «Открыта 22-ая генетически кодируемая аминокислота» // Вопр. мед. химии. 2002. № 5 -. с. 432

 

Тема занятия № 2


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.