Ядро и внешняя оболочка тела — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Ядро и внешняя оболочка тела

2017-12-10 318
Ядро и внешняя оболочка тела 0.00 из 5.00 0 оценок
Заказать работу

С точки зрения терморегуляции, тело человека можно представить состоящим из двух компонентов: внешней оболочки, и внутреннего, ядра. Ядро – это часть тела, которая имеет постоянную температуру, а оболочка – часть тела, в которой имеется температурный градиент. Через оболочку идёт теплообмен между ядром и окружающей средой.

Терморегуляция

Терморегуляция – это совокупность физиологических процессов, деятельность которых направлена на поддержание относительного постоянства температуры ядра в условиях изменения температуры среды с помощью регуляции теплопродукции и теплоотдачи. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если подобные нарушения уже произошли, и осуществляется нервно-гуморальным путём.

Виды терморегуляции

Терморегуляцию можно разделить на два основных вида:

Химическую и физическую терморегуляцию. Они, в свою очередь, также подразделяются на несколько видов:

  1. Химическая терморегуляция

- Сократительный термогенез
- Несократительный термогенез

  1. Физическая терморегуляция

-Излучение
-Теплопроведение (кондукция)
-Конвекция
-Испарение

Рассмотрим эти виды терморегуляции подробнее.

Химическая терморегуляция

Сократительный термогенез

Этот вид терморегуляции работает если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц.

При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3–5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле "встают дыбом", появляются "мурашки"). С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25–40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5–15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15–30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

Несократительный термогенез

Этот вид терморегуляции может приводить, как повышению, так и к понижению температуры тела.

Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ. А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Физическая терморегуляция

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Различают несколько механизмов отдачи тепла в окружающую среду.

  1. Излучение – отдача тепла в виде электромагнитных волн инфракрасного диапазона. За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным». Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и градиенту температуры. При температуре окружающей среды 20°с и относительной влажности воздуха 40–60% организм взрослого человека рассеивает путём излучения около 40–50% всего отдаваемого тепла.
  2. Теплопроведение (кондукция) – способ отдачи тепла при непосредственном соприкосновении тела с другими физическими объектами. Количество тепла, отдаваемого в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади соприкасающихся поверхностей, времени теплового контакта и теплопроводности.
  3. Конвекция – теплоотдача, осуществляемая путём переноса тепла движущимися частицами воздуха (воды). Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. В условиях температурного комфорта этим способом тело теряет до 15% всего отдаваемого тепла.
  4. Испарение – отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых дыхательных путей. За счёт испарения организм в условиях комфортной температуры отдаёт около 20% всего рассеиваемого тепла. Испарение делится на 2 вида.

Неощущаемая перспирация – испарение воды со слизистых дыхательных путей (через дыхание) и воды, просачивающейся через эпителий кожного покрова (Испарение с поверхности кожи. Оно идёт даже в случае, если кожа сухая.).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки.

Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

Ощущаемая перспирация – отдача тепла путём испарения пота. В среднем за сутки при комфортной температуре среды выделяется 400–500 мл пота, следовательно, отдаётся до 300 ккал энергии. Однако при необходимости объём потоотделения может увеличиться до 12 л в сутки, т.е. путём потоотделения можно потерять до 7000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно.

 

Движение воздуха

Движения воздушных масс возникают вследствие неравномерного распределения атмосферного давления и температуры воздуха. Движения воздуха характеризуются направлением и скоростью. Учитывать направление движения воздуха необходимо при занятиях многими видами спорта, и прежде всего такими, как парусный, буерный, планерный, парашютный и др. Данные о преобладающем направлении воздуха в определенной местности имеют важное значение при проектировании и строительстве спортивных сооружений: они позволяют правильно выбрать место для спортивных сооружений, а также расположить их с наветренной стороны по отношению к промышленным предприятиям, которые могут загрязнять воздух дымом и газом.

 

Определение направления движения воздуха может также помочь составить правильный прогноз погоды, который следует учитывать при организации тренировок и соревнований. Например, в европейской части России летом восточные ветры обычно приносят сухую погоду, западные - более прохладную и дождливую; юго-западные - облачность; северо-восточные - ясную погоду. Зимой восточные ветры приносят холодную погоду; западные - теплую; юго-восточные - потепление, осадки; северо-восточные - похолодание, уменьшение осадков.

Направления движения воздуха определяются по той точке горизонта, откуда дует ветер, и обозначаются начальными буквами стран света: С (север), Ю (юг), З (запад), В (восток). Наряду с главными румбами, выделяют промежуточные, находящиеся между ними. Весь горизонт разделяется на восемь румбов: север, севе-

ро-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад. Обозначая промежуточные румбы, указывают оба румба, между которыми находится данное направление, ставя первым по порядку основной румб. Например, если направление ветра находится между севером и северо-востоком, то такой промежуточный румб называют ССВ (северо-северо-востоком).

Для изучения преобладающих направлений ветров в данной местности используют специальную схему, получившую название "розы ветров". Составив график стран света, откладывают от центра на определенных румбах отрезки, по длине соответствующие числу наблюдающихся ветров за сутки, в процентах к общему числу ветров за данный период. Концы отрезков соединяют прямыми линиями. Отсутствие ветра (штиль) обозначается окружностью в центре графика, радиус которой должен соответствовать количеству дней безветренной погоды. Составленная таким образом "роза ветров" показывает преобладающее направление движения воздуха в данной местности. При проектировании и строительстве спортивных сооружений, используемых круглогодично или в различные сезоны, необходимо учитывать соответствующую этим периодам "розу ветров".

 

Скорость движения воздуха - существенный фактор, оказывающий значительное влияние на теплообмен человека. Ее значение для теплорегуляции организма необходимо рассматривать совместно с действием температуры и влажности воздуха. При низкой температуре большая скорость движения воздуха способствует охлаждению организма. Ветер вытесняет из-под одежды нагретый воздух и усиливает его движение вокруг тела. При высокой температуре движущийся воздух увеличивает отдачу тепла за счет конвекции и испарения пота. Однако это благоприятное влияние ветра наблюдается в случаях, когда температура воздуха ниже температуры тела. В противоположном случае, если температура воздуха превышает температуру тела, движущийся воздух вместо охлаждения способствует нагреванию организма.

Скорость движения воздуха оказывает определенное нервно-психическое действие. Прохладный и умеренной силы ветер тонизирует организм, а сильный и продолжительный вызывает возбуждение и раздражение. Неприятен для человека и постоянный шум ветра. Сильный встречный ветер препятствует передвижению спортсмена при ходьбе, беге, езде на велосипеде, гребле и т. п. Он также затрудняет дыхание.

В спортивной практике часто возникает необходимость определять и учитывать скорость движения воздуха. Она играет боль-

шую роль во время тренировок и соревнований, прежде всего в таких видах спорта, как парусный, парашютный, буерный, планерный и др. При занятиях на открытом воздухе всегда нужно учитывать влияние скорости ветра на теплообмен и нервно-психическое состояние спортсмена. По возможности на тренировках следует создавать условия, исключающие неблагоприятное действие ветра на организм.

Скорость ветра необходимо учитывать при определении спортивных результатов. Так, например, в правилах соревнований по легкой атлетике указывается, что рекорды в беге по прямой и в прыжках в длину не регистрируются, если скорость попутного ветра превышает 2 м/с. Определенное значение имеют данные о скорости движения воздуха при оценке микроклиматических условий в расчетах эффективности вентиляции в закрытых спортивных сооружениях.

 

В летнее время в зависимости от температурных условий и вида деятельности теплоотдача организма улучшается при скорости движения воздуха 1-4 м/с. Ветер, имеющий скорость выше 6-7 м/с, обычно оказывает раздражающее действие. Для жилых помещений скорость движения воздуха не должна превышать

0,1-0,3 м/с.

Скорость движения воздуха в зонах нахождения занимающихся спортом может быть следующей: в залах ванн крытых бассейнов - 0,2 м/с; в спортивных залах для борьбы, настольного тенниса и крытых катках - 0,3 м/с; в остальных спортивных залах и залах для подготовительных занятий в бассейнах - 0,5 м/с.

Следует также отметить, что на терморегуляцию влияют тепловые (инфракрасные) лучи, идущие от солнца и других нагретых предметов. При высокой температуре окружающей среды тепловые лучи способствуют перегреванию организма, а при низкой температуре инфракрасная радиация помогает поддерживать тепловой баланс.

При наиболее благоприятном сочетании температуры, влажности, скорости движения воздуха и других факторов человек испытывает приятное теплоощущение; у него отмечаются тепловое равновесие и нормальное течение всех физиологических функций. Такие метеорологические условия принято называть комфортом. И наоборот, сочетание метеорологических факторов, которые нарушают теплорегуляцию организма, называют дискомфортом.

Высокая температура и влажность воздуха, отсутствие его движения и значительная интенсивность солнечной радиации являются весьма нежелательными при выполнении физических упражне-

ний. В этих случаях вследствие ухудшения условий теплоотдачи, повышения теплопродукции и большой тепловой нагрузки может быстро наступить перегревание организма.

Низкая температура и высокая влажность воздуха при сильном ветре способствуют значительному охлаждению организма и могут служить причиной различных простудных заболеваний. При занятиях физическими упражнениями в таких условиях появляется опасность возникновения у занимающихся простудных заболеваний и отморожения.

 

РОЗА ВЕТРОВ

РОЗА ВЕТРОВ - векторная диаграмма, характеризующая режим ветра в данном месте по многолетним наблюдениям. Длины лучей, расходящихся от центра диаграммы в разных направлениях, пропорциональны повторяемости ветров этих направлений. Розу ветров учитывают при планировке населенных мест (целесообразной ориентации зданий).

Воздух, окружающий Землю, имеет массу, и несмотря на то, что масса атмосферы примерно в миллион раз меньше массы Земли (общая масса атмосферы равна 5,2*1021 г, а 1 м3 воздуха у земной поверхности весит 1,033 кг), эта масса воздуха оказывает давление на все объекты, находящиеся на земной поверхности. Сила, с которой воздух давит на земную поверхность, называется атмосферным давлением.

При снижении атмосферного давления, повышается влажность воздуха, возможны осадки и повышение температуры воздуха.
Первыми, снижение атмосферного давления чувствуют на себе люди с пониженным артериальным давлением (гипотоники), «сердечники», а также люди имеющие заболевания органов дыхания.
Чаще всего появляется общая слабость, затрудненный вдох, чувство нехватки воздуха, возникает одышка.
Понижение атмосферного давления, особенно остро и болезненно ощущают люди, имеющие высокое внутричерепное давление. У них обостряются приступы мигрени. В пищеварительном тракте, тоже не все в порядке – появляется дискомфорт в кишечнике, за счет повышенного газообразования.


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.