Функциональная характеристика гладких мышц — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Функциональная характеристика гладких мышц

2017-12-09 1119
Функциональная характеристика гладких мышц 0.00 из 5.00 0 оценок
Заказать работу

Гладкие мышцы образуют стенки (мышечный слой) внутренних органов и кровеносных сосудов.

Микроскопическое строение гладких и поперечнополосатых мышц различно.

Физиологические свойства гладких мышц в связи с особенностями их строения и уровня обменных процессов значительно отличаются от физиологических свойств поперечнополосатых мышц.

Гладкие мышцы менее возбудимы, чем поперечнополосатые. Возбуждение в гладких мышцах может передаваться с одного волокна на другое, в отличие от нервных волокон и волокон поперечнополосатых мышц. Возбуждение по гладким мышцам распространяется с небольшой скоростью - 2-15 см/с.

Сокращение гладкой мускулатуры происходит более медленно и длительно. Так, сокращение гладкой мускулатуры кишечника кролика может продолжаться 5 с, еще более медленно протекает расслабление.

Вследствие продолжительности сократительного акта гладкая мышца даже под влиянием редких раздражителей может переходить в состояние длительного сокращения, которое напоминает тетанус скелетных мышц. Характерными для гладких мышц являются также длительные тонические сокращения.

Рефракторный период в гладких мышцах более продолжителен, чем в скелетных.

Важным свойством гладкой мышцы является ее большая пластичность, т.е. способность сохранять созданную растяжением длину без изменения напряжения. Данное свойство имеет существенное значение, так как некоторые органы брюшной полости (матка, мочевой пузырь, желчный пузырь) иногда значительно растягиваются.

Характерной особенностью гладких мышц является их способность к автоматии, которая обеспечивается нервными элементами, заложенными в стенках гладкомышечных органов.

Адекватным раздражителем для гладких мышц является их быстрое и сильное растяжение, что имеет большое значение для функционирования многих гладкомышечных органов (мочеточник, кишечник и другие полые органы).

Особенностью гладких мышц является также их высокая чувствительность к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и другие).

Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, которые, как правило, оказывают противоположное влияние на их функциональное состояние.

 

Т.О. Продолжительность одиночного мышечного сокращения - 0,1с. Приблизительно фаза укорочения и расслабления для скелетной мышцы одинаково - 0,05с. ЛП длинее, чем ПД.

В гладких мышцах продолжительность от нескольких секунд до нескольких минут. Продолжительность фазы расслабления более продолжительнее. ЛП короче, чем ПД.

РАЗДЕЛ: ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

 

ЗАНЯТИЕ №1

 

ТЕМА: БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ОРГАНИЗМЕ.

ПОТЕНЦИАЛ ПОКОЯ, ПОТЕНЦИАЛ ДЕЙСТВИЯ.

ЗАКОНЫ ВОЗБУЖДЕНИЯ

 

Продолжительность занятия – 2 часa.

План и организация занятия.

 

1. Подготовительный этап занятия:

а) организационные мероприятия - 5 мин.

б) проверка и коррекция исходного уровня знаний, посредством разбора материала в устной форме или с использованием учебника - 20 мин.

2. Основной этап занятия:

а) выполнение практических работ - 45 мин.

б) запись протокола исследования - 15 мин.

в) анализ результатов исследования - 10 мин.

 

3. Конечный этап занятия:

а) контроль конечного уровня усвоения учебного материала тестовым контролем или решением ситуационных задач - 20 мин.

3. Учебные цели занятия.

ЗНАТЬ:

1. Понятия возбудимости и раздражимости.

2. Роль, значение и функции плазматической мембраны клеток.

3. Учение о потенциал зависимых натриевых, калиевых, хлорных, кальциевых каналах.

4. Учение о неравномерном распределении ионов в возбудимых тканях, о трансмембранном электрохимическом градиенте и равновесном потенциале.

5. Мембранно-ионные механизмы происхождения, физические характеристики и физиологическую роль потенциала покоя.

6. Механизм потенциала действия, как проявление распространяющегося возбуждения. Динамику ионных токов при возбуждении.

7. Ионную природу локального ответа и физиологические характеристики, отличающие локальный ответ от распространяющегося возбуждения.

8. Изменение возбудимости в различные фазы генерации потенциала действия. Объяснение лабильности.

9. Закон электротонического потенциала: процессы, происходящие под катодом и анодом, при внеклеточном действии постоянного тока на возбудимые ткани.

10. Законы «силы», «все или ничего», «силы-времени». Аккомодация каналов мембран клеток.

11. Понятие реобазы, хронаксии.

12. История учения об электрических явлениях в возбудимых тканях.

 

УМЕТЬ:

1. Рисовать схемы развития потенциала покоя и потенциала действия.

2. Рисовать кривые потенциала действия и изменения возбудимости клетки во время его генерации.

4. Рисовать схему эквивалентной электрической модели плазматической мембраны.

5. Приготовлять нервно-мышечный препарат лягушки.

6. Работать с измерительными приборами.

 

4. Методика проведения занятия:

1.Подготовительный этап занятия.

В начале занятия следует сформулировать его цель и задачи, что студенты должны знать и уметь по окончанию занятия. В соответствии с этим, необходимо объяснить студентам, что знание материала этой темы потребуется для понимания значения роли плазматической мембраны в механизмах функционирования всех клеток организма, а особенно они важны при изучении физиологических свойств и особенностей нервной, мышечной и секреторной тканей. Знание особенностей строения и видов транспорта через плазматическую мембрану позволит студентам объяснить происхождение и поддержание на должном уровне основных констант клеток, механизмов действия гормонов, медиаторов и лекарственных веществ, развитие процессов возбуждения и торможения в клетках организма и выполнение других специфических функций. Все полученные знания будут необходимы при изучении других разделов физиологии, при обучении на последующих теоретических и клинических кафедрах. Следует обратить внимание студентов на то, что в настоящее время основные исследования в мире в области физиологии проводятся на клеточном, мембранном или молекулярном уровне, что без знания этих разделов невозможно объяснить и понять причины различных заболеваний и проводить необходимую терапию.

Основную часть подготовительного этапа занятия необходимо посвятить контролю исходного уровня знаний студентов путем устного или тестового опроса.

2. Основной этап занятия.

Этот этап занятия следует посвятить разбору и коррекции исходного уровня знания студентов, с учетом проведенного контроля. С этой целью рекомендуется провести устный разбор материала по основным вопросам занятия и предложить студентам написать и нарисовать основные формулы, графики и схемы. В процессе разбора учебного материала необходимо выяснить все вопросы занятия, записать основные понятия и формулировки, зарисовать в отчеты схемы, графики и формулы. При этом студенты могут пользоваться любой учебной литературой: учебниками, справочниками, атласами, электронным учебником и другими источниками информации.

Практическая часть: Проведение лабораторных работ в соответствии с рабочей программой.

3. Заключительный этап занятия.

На этом этапе занятия проводится контроль конечного уровня знания студентов, для чего рекомендуется использовать либо тестовый контроль знаний, либо решение ситуационных задач.

В заключение занятия преподаватель проверяет и подписывает протоколы студентов по выполнению лабораторных работ, задает задание для самостоятельной подготовки к следующему занятию.

 

Лабораторные работы.

1. Приготовление нервно-мышечного препарата лягушки.

Для изучения физиологических свойств мышц и нервов часто используют нервно-мышечный препарат, приготовленный из задних лапок лягушки. Классическим нервно-мышечным препаратом считают икроножную мышцу и седалищный нерв, который ее иннервирует.

Ход работы. Отпрепаровав нерв до коленного сустава, перерезают конечность выше и ниже коленного сустава и получают нервно-мышечный препарат. Для приготовления препарата изолированной мышцы от нервно-мышечного препарата отсекают нерв.

Рекомендации к оформлению работы. Зарисуйте нервно-мышечный препарат, обозначьте его части и укажите, для каких целей он используется.

2. Проводимость нерва и её нарушение.

Одним из основных физиологических свойств возбу­димых тканей является возбудимость, которая у различных тканей различна. Для характеристики уровня возбудимости служит порог раздражения, т.е. минимальная сила раздражителя, при действии которой возникает ответная реакция. В экспериментальных условиях для определения возбу­димости мышцы применяют прямой метод ее раздражения, т.е. раздражение, наносимое непосредственно на мышцу. Возбудимость нерва исследуют раздражением нерва, иннервирующего данную мышцу, т.е. методом непрямого раздражения мышцы.

Ход работы. Готовят нервно-мышечный препарат. Подавая на нерв одиночные стимулы с постоян­ной длительностью, например 0,5 мс, постепенно увеличи­вают амплитуду и находят ту минимальную силу раздра­жителя, которая вызывает едва заметное сокращение мыш­цы - это и будет порог раздражения для нерва.

Для определения порога раздражения мышцы на нее наносят прямое раздражение через проводящую цепь ми­ографа, соединенного со стимулятором. Порог раздраже­ния находят так же, как при непрямом раздражении.

Рекомендации к оформлению работы. Зарисуйте схему установки для прямого и непрямого раздражения мышцы, запишите результаты опыта и дайте срав­нительную оценку возбудимости нерва и мышцы. Сделать выводы о различии величин возбудимости нерва и мышца.

 

3. Опыты Гальвани.

Первый опыт Гальвани.

Ход работы. Готовят препарат двух задних лапок лягушки и подвешивают его на штативе. Берут биметал­лический пинцет, одна бранша которого сделана из меди, а другая - из железа. Медную браншу подводят под нервные сплетения, а другую прикладывают к мышцам лапки. Наблюдают сокращение мышц лапок.

Рекомендации к оформлению работы. Зарисуйте схему опыта, сделайте вывод о причине сокращения мышц.

Второй опыт Гальвани (сокращение без металла).

Вторым опытом Гальвани впервые было доказано суще­ствование в тканях «животного электричества», которое возникает между поврежденной и неповрежденной поверх­ностями мышцы. Если эти два участка соединить нервом нервно-мышечного препарата, то возникает ток покоя, который раздражает нерв и вызывает сокращение мышцы.

Ход работы. Набрасыва­ют седалищный нерв таким образом, чтобы он одновре­менно коснулся поврежденной и неповрежденной поверх­ности мышц бедра. При этом происходит сокращение мышц голени.

Рекомендации к оформлению работы. Зарисуйте схему опыта, в выводе объясните причину сокращения мышц лапки.

 

4. Опыт Маттеучи.

Опыт Маттеучи.

Раздражение нерва токами действия скелетной мышцы (вторичный тетанус). Маттеучи в 1840 г. показал, что сокращение мышцы нервно-мышечно­го препарата может наступить, если нерв этого препарата набросить на сокращающиеся мышцы другого нервно-мы­шечного препарата. На основании этого было сделано заключение, что в мышце при ее возбуждении возникают токи, которые могут стать раздражителем для другого нервно-мышечного препарата. Эти токи были названы, то­ками действия.

Ход работы. Нерв одного нервно-мышечного препарата (с кусочком позвоночника) с помощью стеклян­ного крючка помещают на электроды, которые соединены со стимулятором. На мышцы этого препарата в продольном направлении набрасывают нерв второго нервно-мышечного препарата. Нерв первого нервно-мышечного препарата подвергают ритмическому раздражению. Наблюдают тетаническое сокращение обеих лапок.

Рекомендации к оформлению работы. Зарисуйте схему опыта, в выводе объясните причину возникновения вторичного тетануса.

 

5. Зависимость силы ответа от силы раздражителя.

Скелетная мышца на раздражители пороговой силы отвечает минимальным пороговым сокращением. Если силу раздражителя постепенно увеличивать, то амплитуда сокращений скелетной мышцы также будет постепенно возрастать от пороговых до субмаксимальных и максимальных сокращений, после чего увеличение силы раздражителя не вызывает дальнейшего увеличения амплитуды сокращения. Такая реакция скелетной мышцы обусловлена ее строением. Она состоит из множества мышечных волокон, имеющих различную возбудимость и, следовательно, вовлечение их в реакцию идет постепенно: на пороговую силу раздражителя реагируют мышечные волокна с самой высокой возбудимостью, т.е. имеющие самый низкий порог раздражения. По мере увеличения силы раздражителя в сократительный процесс постепенно вовлекаются волокна, имеющие меньшую возбудимость. При максимальной силе раздражителя происходит сокра­щение всех мышечных волокон, составляющих данную мышцу, и поэтому амплитуда сокращений мышцы больше не увеличивается, несмотря на увеличение силы раздражи­теля.

Ход работы. Готовят препарат икроножной мышцы лягушки. Находят порог раздражения для мышцы, который опреде­ляют по ее минимальному сокращению. Далее, увеличивая силу раздражителя, записывают сокращение мышцы на кимографе.

Сделать вывод о зависимости между величиной раздражения и силой сокращения мышц.

 

6. Действие раздражителей различной природы.

 

Задача № 1.

При ухудшении кровоснабжения миокарда в межклеточной жидкости повышается концентрация ионов калия. Как и почему это скажется на генерации ПД в клетках миокарда?

Эталон ответа.

При повышении концентрации ионов калия в межклеточной жидкости возникает гиперполяризация мембран волокон миокарда. Значение их критического уровня деполяризации приближается к нулю, в результате чего генерация потенциала действия (ПД) станет невозможна.

Задача № 2.

Как и почему изменится амплитуда ПД клетки

а) при повышении концентрации ионов калия в цитоплазме

б) при повышении концентрации ионов натрия в межклеточной жидкости

в) при увеличении проницаемости мембраны клеток для ионов калия?

Эталон ответа.

Амплитуда ПД при повышении концентрации ионов калия в цитоплазме и увеличении проницаемости клеточной мембраны для этих ионов будет уменьшаться, а при повышении концентрации ионов натрия в межклеточной жидкости будет увеличиваться.

Задача № 3.

Какое практическое значение имеет следствие закона «силы-времени», согласно которому при предельно коротком времени действия сверхсильного раздражителя в ткани не будет возникать возбуждение?

Эталон ответа.

Данное свойство (закон, следствие закона «силы-времени») является биофизической основой метода УВЧ-терапии. Такой электрический ток вследствие своей ультравысокой частоты не успевает вызвать изменение состояния белков каналов и насосов мембран клеток, следовательно, генерации ПД в мышечных клетках и нервных окончаниях не происходит. Однако, вследствие наличия электрического сопротивления тканей происходит их нагревание.

Задача № 4.

Под влиянием местного анестетика в мембране клетки увеличилось число инактивированных натриевых каналов. Как и почему это скажется на параметрах ПД, возникающих в клетке?

Эталон ответа.

При увеличении числа инактивированных натриевых каналов клеточной мембраны уменьшится ее проводимость для ионов натрия. В результате этого уменьшится диффузионный поток положительно заряженных ионов натрия, входящий в клетку во время восходящей фазы ПД. Это приведет к уменьшению крутизны этой фазы и к уменьшению амплитуды ПД.

Задача № 5.

Под влиянием фармакологических факторов в мембране клеток увеличилось число калиевых каналов, которые могут активироваться при генерации ПД клетки. Как и почему это скажется на параметрах ПД клетки?

Эталон ответа.

Если во время генерации ПД увеличится число активированных калиевых каналов клеточной мембраны, то возрастет диффузионный поток положительно заряженных ионов калия, который выходит из клетки, в основном во время нисходящей фазы ПД. Это приведет к уменьшению длительности этой фазы, а, следовательно, и всего ПД в целом. Кроме того, может также несколько уменьшиться амплитуда ПД.

 

 

ЗАНЯТИЕ № 2

ТЕМА: ФИЗИОЛОГИЯ МЫШЦ

 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.061 с.