Конструктивные схемы и конструктивные системы зданий. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Конструктивные схемы и конструктивные системы зданий.

2017-12-09 319
Конструктивные схемы и конструктивные системы зданий. 0.00 из 5.00 0 оценок
Заказать работу

Конструктивные схемы и конструктивные системы зданий.

Конструктивная система представляет собой совокупность вертикальных и горизонтальных несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.

По виду вертикальной несущей конструкции различают пять основных и семь комбинированных конструктивных систем, которые можно представить так:

Основные:СТЕНОВАЯ,КАРКАСНАЯ,ОБЪЕМНО-БЛОЧНАЯ,СТВОЛЬНАЯ,ОБОЛОЧКОВАЯ,КОМБИНИРОВАННЫЕ

КАРКАСНЫЕ:КАРКАСНО-СТЕНОВАЯ,КАРКАСНО-БЛОЧНАЯ,КАРКАСНО-СТВОЛЬНАЯ,КАРКАСНО-ОБОЛОЧКОВАЯ

БЕСКАРКАСНЫЕ:БЛОЧНО-СТЕНОВАЯ,СТВОЛЬНО-СТЕНОВАЯ,СТВОЛЬНО-ОБОЛОЧКОВАЯ

Каркасная система с пространственным рамным каркасом применяется преимущественно в строительстве многоэтажных общественных зданий в 9 и более этажей.

Бескаркасная система самая распространённая в жилищном строительстве 16 этажей и более.

Объемно-блочная система зданий в виде установленных друг на друга объемных блоков применяется для жилых домов высотой до 12 этажей в обычных и сложных грунтовых условиях.

Ствольную систему применяют в зданиях высотой более 16 этажей.

 

Конструктивная схема

Основными несущими элементами зданий являются фундаменты, стены, отдельные опоры, элементы перекрытий и покрытий, составляющие несущий остов здания.

По конструктивной схеме несущего остова здания подразделяются на бескаркасные, каркасные и с неполным каркасом.

В бескаркасных зданиях основными вертикальными несущими элементами являются стены, в каркасных — отдельные опоры (колонны, столбы), в зданиях с неполным каркасом — и стены и отдельные опоры.

 

Для бескаркасных типов зданий характерны следующие схемы: с продольным расположением несущих стен (на них опираются междуэтажные перекрытия); с поперечным расположением несущих стен (наружные стены, за исключением торцовых – самонесущие, на них не передаются нагрузки от перекрытий); перекрёстная – с опиранием плит перекрытия (по контуру, т.е. опирание на четыре стороны) на продольные и поперечные стены.

Для каркасного типа зданий используются следующие схемы: с продольным расположением ригелей; с поперечным расположением ригелей; с перекрёстным расположением ригелей; безригельные.

 

 

Общие положения теории движения людских потоков. Предельные состояния при расчете времени эвакуации людей из зданий.

Движение людских потоков представляет собой сложный процесс, на который большое влияние оказывает психологическое состояние людей, участвующих в движении. Движение может быть нормальным и аварийным, беспорядочным и поточным, согласованным (ходьба в ногу) и несогласованным, длительным и кратковременным, свободным и стесненным. Для проектирования наибольшее значение имеет нормальное, массовое, поточное, несогласованное, стесненное, длительное движение.

 

Рис. 12.9. Габариты человека в виде его проекции на горизонтальную плоскость

где f – площадь горизонтальной проекции одного человека, м2.

Плотностью людского потока D называется отношение числа людей, выраженного в суммарной площади их проекций, к площади пути, занимаемой потоком:

 

Так как и число людей, и площадь пути выражены в квадратных метрах, плотность потока – величина безразмерная. Исследованиями установлено, что свободное движение возможно при D = 0,05, т.е. один человек на 2–2,5 м2. При бо́льших плотностях движение уже становится стесненным. Максимальная плотность, при которой движение практически останавливается, составляет D = 0,92, т.е. 7,4-9,2 чел/м2 (в зависимости от одежды). В условиях аварийной эвакуации плотность может быть даже больше единицы за счет давления людей друг на друга и уменьшения площади их проекции на горизонтальную плоскость. Это – основная причина несчастных случаев с людьми.

Скорость движения людского потока v зависит от его плотности и вида пути (рис. 12.10, 12.11). Эти зависимости получены в результате большого количества натурных наблюдений и их последующей обработки методами математической статистики. Представлены средние значения. Чем меньше плотность, тем больше могут быть отклонения от средних значений. В зоне высоких плотностей отклонения не превышают ±10 м/мин.

 

Теория движения людских потоков определяет основные закономерности движения, которые рассматривают общий путь, преодолеваемый потоком, как сумму участков, отличающихся по виду пути (горизонтальные, наклонные, проемы) или по ширине. Границей смежных участков называется такое сечение пути, где меняется ширина пути δ, вид пути или то и другое одновременно. Для беспрепятственного перехода потока через границу смежных участков пропускная способность их должна быть одинаковой:

(12.1)

Для определения интенсивности движения на участке п + 1 выражение (12.1) надо представить в развернутом виде через интенсивность движения и ширину участков:

Тогда

(12.2)

Отсюда следует, что интенсивность движения на смежных участках пути обратно пропорциональна ширине этих участков. Если пропускная способность первого участка (Q n) больше, чем второго (Qn+1), то перед границей смежных участков пути образуется скопление людей, так как в единицу времени по первому участку к его границе подходит больше людей, чем способен пропустить второй участок за то же время.

Во время движения людского потока через границу смежных участков при скоплении людей происходит разуплотнение потока. Оно состоит в том, что при образовании скопления перед границей и на границе с плотностью D max плотность на следующем участке после границы оказывается значительно меньше Dmax. Разуплотнение потока объясняется тем, что в определенном для каждого вида пути диапазоне плотностей одному значению интенсивности движения (q) соответствуют два значения плотности (D) (рис. 12.12, 12.13). Разуплотнение потока происходит только в тех случаях, когда второй участок имеет некоторую протяженность. В проемах, где длина пути мала, разуплотнение потока не проявляется.

Рис. 12.12. Движение людского потока через границу смежных участков пути одного вида, но разной ширины при Q n = Q n+1:

а – план пути; 6 – схема пути; в – расчетный график

Рис. 12.13. Схемы путей движения при образовании скопления людей (а) и при разуплотнении потока после скопления (б)

Слияние людских потоков происходит в тех местах здания, где сходятся различные пути движения (рис. 12.14). Слияние людских потоков предполагает, что либо головные части потоков подходят одновременно к месту слияния, либо, что гораздо чаще, к месту слияния потоки подходят в разное время. При этом один поток как бы вклинивается в другой. В результате на участке, по которому движется объединенный поток, последний приобретает разные параметры. Он как бы состоит из нескольких частей, идущих друг за другом и имеющих разные плотности и скорости движения. При дальнейшем движении плотности и скорости движения этих частей выравниваются и образуется поток с едиными параметрами. Этот процесс называется переформированием людского потока.

Рис. 12.14. Схема слияния людских потоков

Все рассмотренные закономерности можно оценить по времени, затрачиваемому на преодоление возникающих препятствий, и с достаточной степенью точности рассчитать время эвакуации людей из здания. Расчет и проектирование путей движения людских потоков осуществляются по расчетным предельным состояниям. Первым расчетным предельным состоянием называется такое состояние путей движения, при котором они перестают удовлетворять предъявляемым к ним эксплуатационным требованиям по времени движения, т.е. когда пути движения не могут пропустить в заданное время установленное количество людей, например при вынужденной эвакуации людей:

Вторым расчетным предельным состоянием называется такое состояние путей движения, при котором они перестают удовлетворять предъявляемым к ним эксплуатационным требованиям по удобствам движения, т.е. когда на путях движения создаются такие плотности потока D, которые превышают установленные предельные плотности D np для данного здания по требованиям удобства и комфорта движения:

Расчет по второму предельному состоянию ведется для таких зданий или помещений, где необходимо не допустить высоких плотностей людских потоков, например залов для проведения общественных мероприятий, лечебных учреждений и т.п. Так как общий путь движения людского потока в здании слагается из различных участков, отличающихся по ширине и виду движения, то общее время движения потока может быть рассчитано по формуле

где l – длина участка пути, м; v – скорость движения но участку, м/мин; μ – коэффициент условий движения; N – число людей в потоке, м2; Q n и Q n+1 – пропускные способности участков п и п + 1, м/мин.

Первый член суммы выражает общее время движения потока по участкам, а второй – общее время задержек движения. Для оценки удобства движения устанавливается плотность потока на каждом участке пути

В зданиях необходимо не допускать скопления людей и обеспечивать кроме заданного ίπρ беспрепятственность движения согласно равенству пропускных способностей смежных участков в соответствии с формулой (12.1).

Если при расчете оказывается, что это равенство не соблюдается, необходимо увеличить ширину участка п + 1. Для определения требуемой наименьшей ширины участка п + 1 можно воспользоваться следующей формулой, полученной из выражения (12.2), в котором q n+l принимается равной qmах для данного вида пути:

Расчет движения людских потоков и определение размеров коммуникационных помещений производятся в следующем порядке.

1. Определяется общая задача, устанавливается время эвакуации людей из здания в нормальных условиях движения.

2. Выбираются расчетные предельные состояния, например tпр = 2,5 мин. Dпр не должно быть больше плотности при qmах для соответствующего вида пути.

3. Устанавливается расчетное количество людских потоков. Для этого выбираются группы помещений, отвечающие главному и подсобным функциональным процессам. На каждом этаже образуется по одному или несколько людских потоков.

4. Выбираются наиболее вероятные пути движения людских потоков. Люди всегда стремятся идти к цели кратчайшим путем, который хорошо просматривается и по которому свободнее и легче идти. Они всегда стремятся двигаться в сторону, противоположную опасности.

5. Устанавливаются число людей в каждом потоке и начальная плотность каждого потока на первом участке пути движения.

6. На основе исходных данных для каждого потока определяют его параметры и время движения, пользуясь вышеприведенными формулами. Движение каждого потока рассчитывается до места слияния с другим потоком. Далее расчет ведется с учетом слияния и переформирования потоков до места слияния со следующим потоком и т.д.

7. Анализируются результаты расчета. Проверяется соответствие полученных значений времени эвакуации и плотности потоков значениям tпр и Dпр. Если значения t и D оказались выше заданных, то выявляются места, где происходит задержка движения. В этих местах необходимо расширить определенные участки пути. Если по расчету значения t и D таковы, что имеются значительные запасы по времени и плотности, то, наоборот, сокращают ширину проходов, коридоров и т.п. Это может дать значительный экономический эффект.

СП 51.13330.2011 Защита от шума.

9.15 Двойные стены или перегородки обычно проектируются с жесткой связью между элементами по контуру или в отдельных точках. Величина промежутка между элементами конструкций должна быть не менее 0,04 м. В конструкциях каркасно-обшивных перегородок следует предусматривать точечное крепление листов к каркасу с шагом не менее 0,3 м. Если применяют два слоя листов обшивки с одной стороны каркаса, то они не должны склеиваться между собой. Шаг стоек каркаса и расстояние между его горизонтальными элементами рекомендуется принимать не менее 0,6 м. Заполнение промежутка мягкими звукопоглощающими материалами особенно эффективно для улучшения звукоизоляции каркасно-обшивных перегородок. Кроме того, для повышения их звукоизоляции рекомендуются самостоятельные каркасы для каждой из обшивок, а в необходимых случаях возможно применение двух- или трехслойной обшивки с каждой стороны перегородки. Величины звукоизоляции принимаются по сертификату на данную конструкцию.

При устройстве стен и перегородок учитывают, прежде всего, воздушный шум. три основных способа ослабления звука: повышение массивности элементов ограждения; применение звукопоглощающих материалов; герметизация всех возможных путей проникновения воздушных звуковых волн. Для повышения звукоизолирующей способности перегородок следует применять уплотнительную ленту между направляющим профилем каркаса и перекрытием, а также в местах сопряжения каркаса со стенами и перекрытиями.

 

Конструктивные схемы и конструктивные системы зданий.

Конструктивная система представляет собой совокупность вертикальных и горизонтальных несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.

По виду вертикальной несущей конструкции различают пять основных и семь комбинированных конструктивных систем, которые можно представить так:

Основные:СТЕНОВАЯ,КАРКАСНАЯ,ОБЪЕМНО-БЛОЧНАЯ,СТВОЛЬНАЯ,ОБОЛОЧКОВАЯ,КОМБИНИРОВАННЫЕ

КАРКАСНЫЕ:КАРКАСНО-СТЕНОВАЯ,КАРКАСНО-БЛОЧНАЯ,КАРКАСНО-СТВОЛЬНАЯ,КАРКАСНО-ОБОЛОЧКОВАЯ

БЕСКАРКАСНЫЕ:БЛОЧНО-СТЕНОВАЯ,СТВОЛЬНО-СТЕНОВАЯ,СТВОЛЬНО-ОБОЛОЧКОВАЯ

Каркасная система с пространственным рамным каркасом применяется преимущественно в строительстве многоэтажных общественных зданий в 9 и более этажей.

Бескаркасная система самая распространённая в жилищном строительстве 16 этажей и более.

Объемно-блочная система зданий в виде установленных друг на друга объемных блоков применяется для жилых домов высотой до 12 этажей в обычных и сложных грунтовых условиях.

Ствольную систему применяют в зданиях высотой более 16 этажей.

 

Конструктивная схема

Основными несущими элементами зданий являются фундаменты, стены, отдельные опоры, элементы перекрытий и покрытий, составляющие несущий остов здания.

По конструктивной схеме несущего остова здания подразделяются на бескаркасные, каркасные и с неполным каркасом.

В бескаркасных зданиях основными вертикальными несущими элементами являются стены, в каркасных — отдельные опоры (колонны, столбы), в зданиях с неполным каркасом — и стены и отдельные опоры.

 

Для бескаркасных типов зданий характерны следующие схемы: с продольным расположением несущих стен (на них опираются междуэтажные перекрытия); с поперечным расположением несущих стен (наружные стены, за исключением торцовых – самонесущие, на них не передаются нагрузки от перекрытий); перекрёстная – с опиранием плит перекрытия (по контуру, т.е. опирание на четыре стороны) на продольные и поперечные стены.

Для каркасного типа зданий используются следующие схемы: с продольным расположением ригелей; с поперечным расположением ригелей; с перекрёстным расположением ригелей; безригельные.

 

 


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.03 с.