Основы легирования стали. Взаимодействие легирующих элементов с железом и углеродом. Влияние легирующих элементов на устойчивость аустенита и феррита. — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Основы легирования стали. Взаимодействие легирующих элементов с железом и углеродом. Влияние легирующих элементов на устойчивость аустенита и феррита.

2017-12-09 63
Основы легирования стали. Взаимодействие легирующих элементов с железом и углеродом. Влияние легирующих элементов на устойчивость аустенита и феррита. 0.00 из 5.00 0 оценок
Заказать работу

Основы легирования стали. Взаимодействие легирующих элементов с железом и углеродом. Влияние легирующих элементов на устойчивость аустенита и феррита.

Легирующие элементы вводятся в сталь для получения требуемой структуры и свойств. Почти все элементы растворяются в железе и влияют на положение точек А3 и А4.По влиянию делятся на 2 группы:1) понижают температуру точки А3, повышают А4.Расширяется область γ-фазы и сужается α-фазы. Сплавы наз аустенитными, если при всех температурах твердый раствор легирующего элемента в γ-железе и не испытывают фазовых превращений. Частично претерпевающие превращение – полуастенитные. 2)понижают А4 и повышают А3. Интервалы точек А1 и А3 сливаются, область γ-фазы полностью замыкается. Сплавы, сост из твердово легирующего элемента в α-железе, наз ферритными. Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность, наприм. легир. Ni. Легир. эл-ты измен. кинетику распада А, сниж. скорость диффузии при всех тем-рах стали, поэтому увелич. устойчивость А. С-образные кривые смещаются вправо, тем самым сниж. критич. скорость закалки. Это улучш. закаливаемость и прокаливаемость стали, так действуют все легир. эл-ты, кроме кобальта. При содерж. в Fe 20% Cr, она способна закаливаться на М. В сталях в кот. содерж. легир. эл-тов <2,5% наз. низколегир.; 2,5-10% - легир.; >10% - высоколегир. В низколегир. сталях обычно содерж. каждого легир. эл-та всегда <1%, хотя он и показан в марке стали. Молибдена 0,15-0,4%; вольфрама 0,5-1,2%; ванадия 0,06-0,3%; Ti 0,03-0,09%; бора 0,002-0,005%; ниобия 0,02-0,05%; азота 0,015-0,025%. Все легир. эл-ты, кроме марганца, уменьш. склонность А зерна к росту. Избыточные карбиды не растворимые в А препятствуют росту зерна А, поэтому сталь при наличии хотя бы небольшого кол-ва не растворимых карбидов сохран. мелкозернист. строение до высоких тем-тур. Легир. эл-ты замедляют процесс распада М.

 

 

Медь и ее сплавы.

Концентрация меди в земной коре 0,01%, в рудах в среднем 5%.Это металл красно-розового цвета без полиморфных превращений. Температура плавления 1083 град. Прочность 160 НПА. После прокатки и прессования 240 НПА. Высокая пластичность, теплопроводность, что обуславливает широкое применение. Медь – основа латуни и бронзы. Недостатки – высокий удельный вес, вязкость, низкая текучесть.

Латуни: 1)двойные (простые); 2) многокомпонентные (легированные). 1) маркируются «Л» и процентное содержание меди. Л96, Л85, Л80, Л62, Л59.

Чем больше цинка, чем дешевле, он повышает прочность и пластичность.Л70 содержит 90% меди, имеет золотой цвет, применяется для золотых изделий. Если 90 и более % меди, то наз ТОМПАК, если 80-85, то ПОЛУТОМАПАК. В маркировке также пишут легирующие

элементы (Al–A, Ni-H, Be-Б,Р-Ф, олово-О,Si-K, Mn-Mц, Be-Б, Zn-Ц) и за буквой количество каждого элемента.

Бронзы: сплавы Cu c Al,Cn,гелием и т.д. Оловянные

бронзы не обрабатываются давлением и применяются в литом состоянии БРО10Ф1.

Алюминиевые бронзы имеют высокие механические, антикоррозийные, антифрикционные свойства, более дешевые. Могут работать до температуры 400-500гр. До 3% Si. Хорошо паяются, свариваются. Бериллиевые бронзы – сплавы, которые упрочнятся термообработкой. После закалки прочность 450 НПА. Упрочняется при последующем старении, обладает хорошими упругими свойствами. БРБ2 – изготовление пружин, мембран, обработка резаньем, сваркой, сопротивляется коррозии. Свинцовые бронзы обладают хорошими антифрикционными свойствами. БРЦ30 для подшипников скольжения, работают при больших нагрузках, имеют высокую теплопроводность.

Маркировка деформированные бронзы: БР, затем легирующие элементы (все буквы, потом процентное содержание) БРОФ-4-0,25. Литейные бронзы: процентное содержание после каждой буквы БРО6Ц6С3.

 

Влияние легир. эл-тов.

Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность, наприм. легир. Ni. Легир. эл-ты измен. кинетику распада А, сниж. скорость диффузии при всех тем-рах стали, поэтому увелич. устойчивость А. С-образные кривые смещаются вправо, тем самым сниж. критич. скорость закалки. Это улучш. закаливаемость и прокаливаемость стали, так действуют все легир. эл-ты, кроме кобальта. Все легир. эл-ты сниж. тем-ный интервал М превращения, поэтому малоуглеродист. стали, кот. обычно не закаливаются на М, в присутствии легир. эл-тов становятся способными закаливаться. При содерж. в Fe 20% Cr, она способна закаливаться на М. В сталях в кот. содерж. легир. эл-тов <2,5% наз. низколегир.; 2,5-10% - легир.; >10% - высоколегир. В низколегир. сталях обычно содерж. каждого легир. эл-та всегда <1%, хотя он и показан в марке стали. Молибдена 0,15-0,4%; вольфрама 0,5-1,2%; ванадия 0,06-0,3%; Ti 0,03-0,09%; бора 0,002-0,005%; ниобия 0,02-0,05%; азота 0,015-0,025%. Все легир. эл-ты, кроме марганца, уменьш. склонность А зерна к росту. Избыточные карбиды не растворимые в А препятствуют росту зерна А, поэтому сталь при наличии хотя бы небольшого кол-ва не растворимых карбидов сохран. мелкозернист. строение до высоких тем-тур. Легир. эл-ты замедляют процесс распада М. Это связано с тем что процессы при отпуске имеют диффузионный хар-тер, а большинство легир. эл-тов замедляют процесс карбидного превращения особенно на стадии коагуляции.

 

Титан и его сплавы.

Титан – металл серого цвета. Температура плавления 1668град.

Технический титан изготовляют 2х марок ВТ1-00 (99,53%), ВТ1-0 (99,46%). На поверхности легко образуется оксидная пленка, повышающая сопротивление коррозии в некоторых агрессивных средах. Его обрабатывают давлением. Сплавы имеют большее применение, чем титан. Легирование титана Fe,Al, Mn, Cr, V, Si повышает его прочность, но снижает пластичность и вязкость. Жаропрочность повышают Al Mo Zr. Титановые сплавы имеют высокую удельную прочность. Al N O повышают температуру полиморфного превращения и расширяют область α-фазы. Mo V Mn Fe Cr понижают эту температуру и расширяют область β-фазы: β→α+ТхМу. При охлаждении β-фаза претерпевает эфтектоидное превращение. Как правило все промышленные сплавы титана содержат алюминий. Могут иметь нейтральные элементы (Sn Zr).

Титановые сплавы применяются в авиации, ракетной технике, в химическом машиностроении и др. ВТ5 хорошо обрабатывается давлением и сваривается. ВТ6 обладает хорошими механическими и технологическими свойствами и упрочняется термической обработкой. ВТ14 применяют для изготовления тяжелонагруженых деталей. ВТ8 применяют после изотермического отжига. Для фасонного литья применяют сплавы ВТ5Л, ВТ6Л, ВТ14Л, которые обладают достаточно хорошими литейными и механическими свойствами.

 

 

Основы легирования стали. Взаимодействие легирующих элементов с железом и углеродом. Влияние легирующих элементов на устойчивость аустенита и феррита.

Легирующие элементы вводятся в сталь для получения требуемой структуры и свойств. Почти все элементы растворяются в железе и влияют на положение точек А3 и А4.По влиянию делятся на 2 группы:1) понижают температуру точки А3, повышают А4.Расширяется область γ-фазы и сужается α-фазы. Сплавы наз аустенитными, если при всех температурах твердый раствор легирующего элемента в γ-железе и не испытывают фазовых превращений. Частично претерпевающие превращение – полуастенитные. 2)понижают А4 и повышают А3. Интервалы точек А1 и А3 сливаются, область γ-фазы полностью замыкается. Сплавы, сост из твердово легирующего элемента в α-железе, наз ферритными. Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность, наприм. легир. Ni. Легир. эл-ты измен. кинетику распада А, сниж. скорость диффузии при всех тем-рах стали, поэтому увелич. устойчивость А. С-образные кривые смещаются вправо, тем самым сниж. критич. скорость закалки. Это улучш. закаливаемость и прокаливаемость стали, так действуют все легир. эл-ты, кроме кобальта. При содерж. в Fe 20% Cr, она способна закаливаться на М. В сталях в кот. содерж. легир. эл-тов <2,5% наз. низколегир.; 2,5-10% - легир.; >10% - высоколегир. В низколегир. сталях обычно содерж. каждого легир. эл-та всегда <1%, хотя он и показан в марке стали. Молибдена 0,15-0,4%; вольфрама 0,5-1,2%; ванадия 0,06-0,3%; Ti 0,03-0,09%; бора 0,002-0,005%; ниобия 0,02-0,05%; азота 0,015-0,025%. Все легир. эл-ты, кроме марганца, уменьш. склонность А зерна к росту. Избыточные карбиды не растворимые в А препятствуют росту зерна А, поэтому сталь при наличии хотя бы небольшого кол-ва не растворимых карбидов сохран. мелкозернист. строение до высоких тем-тур. Легир. эл-ты замедляют процесс распада М.

 

 

Медь и ее сплавы.

Концентрация меди в земной коре 0,01%, в рудах в среднем 5%.Это металл красно-розового цвета без полиморфных превращений. Температура плавления 1083 град. Прочность 160 НПА. После прокатки и прессования 240 НПА. Высокая пластичность, теплопроводность, что обуславливает широкое применение. Медь – основа латуни и бронзы. Недостатки – высокий удельный вес, вязкость, низкая текучесть.

Латуни: 1)двойные (простые); 2) многокомпонентные (легированные). 1) маркируются «Л» и процентное содержание меди. Л96, Л85, Л80, Л62, Л59.

Чем больше цинка, чем дешевле, он повышает прочность и пластичность.Л70 содержит 90% меди, имеет золотой цвет, применяется для золотых изделий. Если 90 и более % меди, то наз ТОМПАК, если 80-85, то ПОЛУТОМАПАК. В маркировке также пишут легирующие

элементы (Al–A, Ni-H, Be-Б,Р-Ф, олово-О,Si-K, Mn-Mц, Be-Б, Zn-Ц) и за буквой количество каждого элемента.

Бронзы: сплавы Cu c Al,Cn,гелием и т.д. Оловянные

бронзы не обрабатываются давлением и применяются в литом состоянии БРО10Ф1.

Алюминиевые бронзы имеют высокие механические, антикоррозийные, антифрикционные свойства, более дешевые. Могут работать до температуры 400-500гр. До 3% Si. Хорошо паяются, свариваются. Бериллиевые бронзы – сплавы, которые упрочнятся термообработкой. После закалки прочность 450 НПА. Упрочняется при последующем старении, обладает хорошими упругими свойствами. БРБ2 – изготовление пружин, мембран, обработка резаньем, сваркой, сопротивляется коррозии. Свинцовые бронзы обладают хорошими антифрикционными свойствами. БРЦ30 для подшипников скольжения, работают при больших нагрузках, имеют высокую теплопроводность.

Маркировка деформированные бронзы: БР, затем легирующие элементы (все буквы, потом процентное содержание) БРОФ-4-0,25. Литейные бронзы: процентное содержание после каждой буквы БРО6Ц6С3.

 


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.