Производные гиперболических функций — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Производные гиперболических функций

2017-11-22 3456
Производные гиперболических функций 4.50 из 5.00 4 оценки
Заказать работу

Гиперболические функции встречаются в механике, электротехнике и других технических дисциплинах. Многие формулы для гиперболических функций похожи на формулы для тригонометрических функций, кроме свойства ограниченности.


 

Функция Название Производная
1. гиперболический синус
2. гиперболический косинус
3. гиперболический тангенс
4. гиперболический котангенс

Формулы для гиперболических функций

1. .

Доказательство. Рассмотрим искомую разность

. Соединяя начало и конец, получим доказываемое равенство: .

 

2. .

Доказательство. Рассмотрим произведение

. Соединяя начало и конец, получим доказываемое равенство: .

 

3. .

Доказательство. Рассмотрим произведение

.

Рассмотрим произведение .

Сложим два произведения и приведем подобные:

. Соединяя начало и конец, получим доказываемое равенство: .

Ещё много других свойств гиперболических функций похожих на свойства тригонометрических функций, которые доказываются аналогично.

Докажем формулы для производных гиперболических функций.

1. Рассмотрим гиперболический синус .

При нахождении производной константу выносим за знак производной. Далее применяем свойство о производной разности двух функций и . Находим производную функции по таблице производных: . Производную функции ищем как производную сложной функции .

Поэтому, производная .

Соединяя начало и конец, получим доказываемое равенство: .

2. Рассмотрим гиперболический косинус .

Полностью применяем предыдущий алгоритм, только вместо свойства о производной разности двух функций и применяем свойство о производной суммы двух этих функций. .

Соединяя начало и конец, получим доказываемое равенство: .

3. Рассмотрим гиперболический тангенс .

Находим производную по правилу отыскания производной дроби.

.

4. Производную гиперболического котангенса

можно найти как производную сложной функции .

Соединяя начало и конец, получим доказываемое равенство: .

 

Дифференциал функции

Пусть функция – дифференцируема в точке , тогда её приращение этой функции в точке , соответствующее приращению аргумента , может быть представлено в виде

, (8.1)

где – некоторое число, не зависящее от , а – функция аргумента , которая является бесконечно малой при .

Таким образом, приращение функции представляет собой сумму двух бесконечно малых слагаемых и . Было показано, что второе слагаемое является бесконечно малой функцией более высокого порядка, чем т.е. (см. 8.1). Поэтому первое слагаемое является главной линейной частью приращения функции . В замечании 8.1. получена другая формула (8.1.1) для приращения функции , а именно: . (8.1.1)

Определение 8.3.Дифференциалом функции в точке называется главная линейная частью её приращения, равная произведению производной в этой точке на произвольное приращение аргумента , и обозначается (или ):

(8.4)

Дифференциал функции называют также дифференциалом первого порядка.

Под дифференциалом независимой переменной понимается любое, независящее от , число. Чаще всего, в качестве этого числа берётся приращение переменной , т.е. . Это согласуется с правилом(8.4) нахождения дифференциала функции

Рассмотрим функцию и найдем её дифференциал.

, т.к. производная . Таким образом, получили: и дифференциал функции можно находить по формуле

. (8.4.1)

Замечание 8.7. Из формулу (8.4.1) следует, что.

Таким образом, запись можно понимать не только как обозначение для производной , но и как отношение дифференциалов зависимого и независимого переменных.

 

8.7. Геометрический смысл дифференциала функции

Пусть к графику функции проведена (см. рис. 8.1) касательная . Точка находится на графике функции и имеет абсциссу – . Даем произвольное приращение , такое, чтобы точка не вышла из области определения функции .

 

Рисунок 8.1 Изображение графика функции

 

 

Точка имеет координаты . Отрезок . Точка лежит на касательной к графику функции и имеет абсциссу – . Из прямоугольного следует, что , где угол – угол между положительным направлением оси и касательной, проведенной к графику функции в точке . По определению дифференциала функции и геометрического смысла производной функции в точке , делаем вывод, что . Таким образом, геометрический смысл дифференциала функции заключается в том, что дифференциал представляет собойприращение ординаты касательной к графику функции в точке .

Замечание 8.8. Дифференциал и приращение для произвольной функции , вообще говоря, не равны между собой.В общем случае, разность между приращением и дифференциалом функции является бесконечно малой высшего порядка малости, чем приращение аргумента. Из определения 8.1следует, что , т.е. .

На рисунке 8.1точка лежит на графике функции и имеет координаты . Отрезок .

На рисунке 8.1 выполнено неравенство , т.е. . Но возможны случаи, когда справедливо противоположное неравенство . Это выполняется для линейной функции и для выпуклой вверх функции.

 

 


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.02 с.