Резервирование как метод повышения надежности — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Резервирование как метод повышения надежности

2017-11-22 3184
Резервирование как метод повышения надежности 5.00 из 5.00 4 оценки
Заказать работу

 

Классификация методов резервирования. Одним из основ­ных средств обеспечения требуемого уровня надежности и прежде всего безотказности объекта или ЭС при недостаточно надежных элементах является резервирование.

Под резервированием понимается применение дополнитель­ных средств и возможностей с целью сохранения работоспособ­ного состояния электрической системы при отказе одного или нескольких ее элементов. Резервирование — это эффективный способ создания электрических систем, надежность которых выше надежности входящих в систему элементов.

При резервировании различаются основные элементы струк­туры, необходимые для выполнения системой требуемых функ­ций при отсутствии отказов его элементов, и резервные элемен­ты, предназначенные для выполнения функций основных эле­ментов в случае их отказа.

Отношение числа резервных элементов пр системы к числу резервируемых ими основных элементов по, выраженное несо­кращенной дробью, называется кратностью резерва

mp = np/no.

Резервирование с кратностью резерва один к одному mр = 1/1 называется дублированием.

К дополнительным средствам и возможностям, применяемым при резервировании, относятся элементы, вносимые в структуру системы в качестве резервных, применение функциональных и информационных средств и возможностей, использование из­бытка времени и запасов нагрузочной способности. Соответст­венно по типу дополнительных средств различают резервирова­ние структурное с применением резервных элементов структуры объекта, функциональное с применением функциональных ре­зервов, информационное с применением резервов информации, временное с применением резервов времени и нагрузочное с применением нагрузочных резервов (рис. 3.28).

В ЭС чаще всего используют структурное резервирование, применяют и другие виды резервирования. Так, при функцио­нальном резервировании иногда используют многофункцио­нальные элементы средств автоматизации, и при их отказе они могут быть использованы в данной системе для других целей, функциональное резервирование осуществляется также при различных способах функционирования, например путем пере­дачи информации различными способами в зависимости от того, какие элементы системы остались работоспособными. Информа­ционное резервирование применяют в системах, где возникно­вение отказа приводит к потере или искажению некоторой ча­сти обрабатываемой или передаваемой информации. Временное резервирование может осуществляться за счет повышения про­изводительности объекта, инерционности его элементов, повто­рения со сдвигом во времени отдельных операций. Нагрузочное резервирование выражается в обеспечении оптимальных запа­сов способности элементов выдерживать действующие на них нагрузки или во введении в систему дополнительных защитных или разгружающих элементов для защиты некоторых основных элементов системы от действующих на них нагрузок.

По способу включения резерва различают по­стоянное и динамическое резервирование. Постоянное резерви­рование осуществляется без перестройки структуры системы при возникновении отказа ее элемента, а динамическое резервирова­ние - с перестройкой структуры системы при возникновении: отказа ее элемента.

В простейшем случае при постоянном резервировании вы­полняют параллельное или последовательное соединение эле­ментов без переключающих устройств, а при динамическом - требуются переключающие устройства, реагирующие на отказы элементов.

Динамическое резервирование часто представляет собой ре­зервирование замещением, при котором функции основного эле­мента передаются резервному только после отказа основного-элемента.

Распространенным видом резервирования замещением явля­ется скользящее резервирование, при котором группа основных элементов системы резервируется одним или несколькими ре­зервными элементами, каждый из которых может заменить лю­бой отказавший основной элемент в данной группе.

По режиму работы резервных элементов до отказа основного элемента различаются нагруженный резерв (один или несколько резервных элементов находятся в режиме основного элемента), облегченный резерв (один или несколько резервных элементов находятся в менее нагруженном режиме,. чем основной элемент) и ненагруженный резерв (один или не­сколько резервных элементов находятся в ненагруженном ре­жиме до начала выполнения ими функций основного элемента).

Понятия нагруженного облегченного и ненагруженного ре­зерва используются для отличия резервных элементов по уров­ню их надежности. Элементы нагруженного резерва имеют тот же уровень надежности (безотказности, долговечности и со­храняемости), что и резервируемые ими основные элементы объекта, так как ресурс резервных элементов расходуется так же, как и основных элементов. Элементы облегченного ре­зерва обладают более высоким уровнем надежности, так как интенсивность расхода ресурса резервных элементов до момен­та включения их вместо отказавших значительно ниже, чем ос­новных. При ненагруженном резерве ресурс резервных элемен­тов начинает расходоваться практически только с момента включения их вместо отказавших элементов.

 

 


Рис.3.28. Классификационная схема видов резервирования

 

По способу резервирования объекта (элемен­та объекта) различают резервирование общее и раздельное. При общем резервировании резервируется объект в целом, пред­усматривается вместо одного объекта одновременная эксплуа­тация двух или более объектов, однотипных или аналогичных по выполняемым функциям. Способ прост и широко применяется на практике при резервировании наиболее ответственных систем. При раздельном резервировании резервируемыми явля­ются отдельные элементы объекта или их группы, которые обычно встроены в объект, раздельно могут резервироваться как отдельные элементы системы, так и достаточно крупные ее части (блоки).

Динамическое резервирование может быть раздельным и общим и позволяет использовать резервные элементы не толь­ко в нагруженном, но и облегченном и ненагруженном резерве, что позволяет сохранять ресурс резервных элементов, повысить надежность электрической системы в целом и уменьшить расход энергии.

При резервировании замещением может быть использовано скользящее резервирование, позволяющее обеспечить требуемую надежность системы при малых затратах и незначительном уве­личении ее массы и габаритов.

К недостаткам динамического резервирования замещением следует отнести необходимость переключающих устройств и на­личия перерывов в работе при переходе на резервные элементы, а также системы поиска отказавшего элемента или блока, что снижает надежность всей резервированной системы. Резервиро­вание замещением целесообразно применять для резервирова­ния достаточно крупных функциональных узлов и блоков слож­ных электрических систем.

Постоянное резервирование, предполагающее постоянное соединение элементов с основными, отличается простотой, не нужны и переключающиеся устройства. При отказе основного элемента система продолжает работать нормально без переры­ва и без переключений. Недостатки постоянного резервирования заключаются в повышенном расходе ресурса резервных элемен­тов и изменении параметров резервируемого узла при отказе элементов.

Постоянное резервирование применяется в ответственных системах, для которых недопустим даже кратковременный пе­рерыв в работе, и при резервировании относительно мелких эле­ментов - узлов, блоков и элементов электронной техники ЭСА (резисторы, конденсаторы, диоды и т. п.).

Резервирование входящих в состав ЭСА электрорадиоэле­ментов, отказ которых может привести к особо опасным послед­ствиям, осуществляется с учетом возможности как коротких замыканий, так и обрывов элементов. Резервирование при об­рывах элементов выполняют их параллельным соединением, а при коротких замыканиях - последовательным соединением элементов, полагая, что происходит отказ элемента, но электри­ческая цепь других, последовательно соединенных с ним эле­ментов, не нарушается. Например, постоянное раздельное ре­зервирование диода с нагруженным резервом при отказе врезультате короткого замыкания (КЗ), обрыва или КЗ иобрыва осуществляется включением резервных диодов соответственно последовательно, параллельно и последовательно-параллельно основному (рис. 3.29, а, в).

Общее постоянное резервирование выпрямителя UD нагру­женным резервом выполняется параллельным включением ре­зерва, а диоды используются для предотвращения протека­ния тока резервного выпрямителя через выходную цепь отка­завшего (рис.3.29, г). Общее резервирование выпрямителя ненагруженным резервом осуществляется с помощью устройства А переключения, которое получает сигнал СО об отказе и по­дает управляющий сигнал УС на переключатель QW на отклю­чение отказавшего выпрямителя и включение резервного (рис.3.29, д).

Постоянное резервирование. Такое резервирование может быть осуществлено путем параллельного или последовательно­го подключения к основному элементу (системе) одного или не­скольких резервных, выполняющих одинаковые с основным эле­ментом (системой) функции. Такое резервирование выполняют, например, при параллельной работе генераторов, вычислитель­ных машин, блоков ЭСА, резисторов и т. д., а также при после­довательном включении диодов, размыкающих контактов, кон­денсаторов ит. д.

Электрические системы с постоянно включенным резервом изготовляются так, чтобы отказавшие элементы не влияли на работу системы в целом. Последствиями отказа элементов при постоянном резервировании в предельных случаях могут быть: короткое замыкание или обрыв одного или нескольких элемен­тов, что должно учитываться при проектировании системы. Для этого вводят ограничивающие сопротивления, включаются раз-

Рис. 3.29. Характерные схемы структурного резервирования:

а, б, в — диода VD соответственно при отказе типа КЗ, обрыве, КЗ и обрыве;

г, д - выпрямителя UD соответственно с нагруженным и ненагруженным ре­зервом

 

делительные трансформаторы, а также увеличивают допуски отдельных параметров системы и др.

Постоянное резервирование предусматривает нагруженный резерв и может быть общим и раздельным; на структурной схе­ме для расчета надежности основные и резервные элементы соединяются параллельно (рис.3.30).

Рис. 3.30. Схемы общего (а) и раздельного (б) постоянного резервиро­вания

 

Электрическая система с общим резервиро­ванием (рис.3.30, а) будет нормально функционировать при сохранении работоспособности хотя бы одной из т+1 парал­лельных цепей, состоящих из последовательно соединенных эле­ментов. Вероятность безотказной работы каждой i-й цепи с п по­следовательно соединенными элементами с учетом (3.68) за время t (для упрощения записей в дальнейшем время не указывается)

Pi = (3.95)

где Рij - вероятность безотказной работы j-го элемента i-й цепи. Вероятность безотказной работы системы с общим резерви­рованием из m + 1 параллельных цепей находится с учетом (3.72) и (3.95):

Рс.о = (3.96)

При одинаковой надежности всех элементов Рij = Рэ форму­ла (3.96) примет вид

Рс.о = 1 - (1 - Pэn)m+1. (3.97)

При заданной вероятности безотказной работы электриче­ской системы с.о на основе (3.97) можно определить необходи­мую величину т, при которой выполняется условие с.о = Рс.о, т. е.

то =

При экспоненциальном законе распределения для элементов системы Рэ = ехр(— λэt) вероятность безотказной работы (3.97) и средняя наработка до отказа системы определяются по фор­мулам

Pс.о(t) = 1 - [1 - ехр (- t)]m+1;

(3.98)

где = пλэ - интенсивность отказов цепи из п элементов; Tср = 1/ - средняя наработка до отказа одной цепи.

ВЭС с раздельным резервированием предпола­гается постоянное включение резервных элементов по отдель­ным участкам системы (рис. 3.30,6).

Вероятность безотказной работы отдельного резервируемого элемента системы

и всей системы при раздельном резервировании

(3.99)

При одинаковой надежности всех элементов (3.99) примет вид

Рс.р = [1 - (1 - Рэ)m+1]n, (3.100)

откуда при заданной вероятности безотказной работы системы определяется соответствующая ей величина

При экспоненциальном законе распределения равнонадежных элементов Рэ = ехр (—λэt) вероятность безотказной работы

Рс.р(t) = {1 - [1 - exp (-λt) ]m+1}n (3.101)

и средняя наработка до отказа системы

(3.102)

где vi = (i + 1) /(m + 1); λ = λэ.

Повышение безотказности ЭС в результате резервирования можно оценить отношением вероятности отказа основной нере­зервированной системы

и резервированной системы

в виде

При одинаковой безотказности основной и резервных систем

γpeз = l/Qim = l/Qom.

Из полученного соотношения следует важный вывод: чем больше вероятность отказа системы (меньше ее безотказность), тем меньше эффект от резервирования. Из этого вывода, иног­да называемого парадоксом резервирования, можно заключить следующее:

возможность резервирования не снимает задачу повышения надежности резервируемых элементов и систем;

общее резервирование системы при прочих равных условиях менее выгодно, чем раздельное, так вероятность отказа части системы меньше, чем вероятность отказа всей системы.

При экспоненциальном законе распределения времени до от­каза вероятность отказа резервированной системы

Qp(t)=Qom+1(t)=[1 - exp(- λot)]m+l,

где λo = const - интенсивность отказов одной резервируемой си­стемы.

На практике обычно λоt < 0,1 тогда

Qo(t)≈ λot = t/Tcp и

QP(t) ≈ (λot) m+1 = (t/Tcp)m+1,

где Tср=1/λо - средняя наработка до отказа резервируемой системы.

С учетом приведенных соотношений выигрыш от резервиро­вания можно представить в виде

γрез ≈ (Тср/t)m.

Отсюда следует, что выигрыш от резервирования уменьша­ется с увеличением требуемого времени t работы системы.

На надежность резервируемых ЭС большое влияние оказы­вает восстановление основной или резервных систем (цепей) сразу после их отказа. В установившемся режиме экс­плуатации вероятность работоспособности цепи со средним вре­менем восстановления Tв.ср и средней наработкой на отказ То в произвольный момент времени (кроме планируемых периодов, в течение которых ее использование по назначению не предус­матривается) представляет собой коэффициент готовности цепи.

К г =

так как в большинстве практических задач Тв.сро<< 1.

Соответственно вероятность отказа цепи может быть опре­делена как вероятность неработоспособности

Qo(t) = 1 - KT ≈ Tв.ср/To.

Тогда повышение безотказности резервированной ЭС с вос­становлением сразу после отказа основной или резервной си­стем

γpeз = l/Qom (To/Tв.сp)m const.

Как видно, качественное отличие резервирования с восста­новлением от резервирования без восстановления заключается в том, что при восстановлении урез в первом приближении не за­висит от наработки t. Следовательно, преимущества резервиро­вания с восстановлением растут по сравнению с резервирова­нием без восстановления с ростом требуемой наработки t. Вместе с тем, следует иметь в виду, что восстановление сразу после отказа может быть реализовано при постоянном контроле, технические средства которого должны иметь вероятность отка­за значительно меньше, чем у контролируемой системы.

Раздельное резервирование более эффективно с точки зре­ния повышения надежности ЭС, особенно при больших n (рис. 3.31). Объясняется это тем, что для отказа системы при общем резервировании достаточно, чтобы отказало по одному элементу из каждой цепи, а при раздельном - чтобы отказали все элементы в какой-либо группе.

Практический интерес представляет вопрос о выборе рацио­нального пути повышения надежности ЭС: с помощью резерви­рования или путем выбора высоконадежных элементов. Если с точки зрения массы, габаритов и стоимости оба пути равноцен­ны, то при решении этого вопроса наиболее важным является требуемая продолжительность непрерывной работы системы t.

Влияние времени t на безотказность работы Pc.p(t) ЭС из двух одинаковых блоков, рабочего и резервного, при нагружен­ном резерве можно определить, используя формулы (3.98) при m = 1 и n = 1:

Рс.р (t) = 2ехр (—t/Тср.б) — exp (—2t/Tcp.6);

Тср = 1,5Тср.б, (3.103)

Рис. 3.31. Зависимости вероятно­сти безотказной работы электри­ческих систем при общем (1) и раздельном (2) резервировании от количества резервных элемен­тов при разном числе последова­тельных элементов

Рис. 3.32. Зависимости вероятности безотказной работы системы от вре­мени при нагруженном резерве (1)и при повышенной надежности блока (2)

 

 

где Тср.б = 1/λ6 — средняя наработка до отказа одного блока; λб — интенсивность отказов одного блока резервируемой си­стемы.

Для нерезервированной электрической системы из одного блока повышенной надежности с такой же средней наработкой до отказа Тср, как у резервированной системы (3.103), вероят­ность безотказной работы будет

Pсн(t) = ехр[- t/(1,5Tср.б)]. (3.104)

Зависимости (3.103) и (3.104) показывают, что резервирова­ние эффективнее, чем непосредственное повышение надежности блока в начальный период работы системы t < 2Тср.б, при t >> 2Tcр.б, наоборот, более эффективно повышение надежности блока (рис.3.32).

Постоянное последовательно-параллельное включение взаимно резервируемых элементов применяется в тех случаях, когда возможно появление отказов типов КЗ и обрыва. Например, конденсатор может отказать из-за потери емкости в результате обрыва или из-за пробоя вслед­ствие КЗ; контакты реле могут отказывать из-за их окисления (обрыв) или из-за их „приваривания" или „залипания" (КЗ) и т. д. (см. табл. 3.7).

С учетом возможности отказов типа обрыв и КЗ во многих случаях применяется постоянное последовательно-параллель­ное включение четырех взаимно резервируемых элементов (рис. 3.33). Когда преобладают отказы элемента типа КЗ

Qкз(t) > Qo6(t),

Рис. 3.33. Постоянное последовательно-параллель­ное включение взаимно резервируемых элементов при отказах преимущественно: типа КЗ (а) и об­рыве (б)

 

 

где Qкз(t) и Qo6(t) - вероятность возникновения отказа эле­мента типа КЗ и обрыв соответственно, применяются последо­вательно-параллельные схемы включения без перемычки (рис.3.33, а), а когда преобладают отказы типа обрыв

Qкз (t) < Qоб (t) -

— последовательно-параллельные схемы с перемычкой (рис. 3.33, б).

Вероятность отказа резервированной цепи при отказах типа обрыв Qр.об(t) и типа КЗ Qр.кз (t) за требуемый промежуток экс­плуатации t является функцией вероятностей отказа элемента Qкз(t) и Qoб(t) и зависит от применяемой схемы резервирова­ния и типа отказа (табл. 3.13).

Из приведенных в табл. 3.13 соотношений следует, что эф­фективность γрез последовательно-параллельного резервирова­ния уменьшается по мере увеличения вероятности отказа эле­мента схемы. При определенном критическом значении Qкз(t) или Qоб(t) вероятность отказа резервированной цепи становит­ся больше вероятности отказа одного элемента, тогда примене­ние последовательно-параллельного резервирования становится нецелесообразным. С учетом достоверности и точности априор­ной информации о надежности элементов обычно рекомендуется применять последовательно-параллельное резервирование в тех случаях, когда вероятность отказа элемента схемы Qкз(t) 0,l и Qo6(t) 0,l.

Таблица 3.13.

Расчетные соотношения для последовательно-параллельного включения

четырех элементов

Схема на рис. Тип отказа Расчетная формула Критическое значе­ние вероятности отказов элемента
3.33, а КЗ Обрыв Qр.кз(t) = 2Q2кз(t) - Q4кз(t) Qр.об(t) = 4Q2об(t) - 4Q3об + Q4об(t) ≤0,618 ≤0,382
3 33,6 КЗ Обрыв Qр.кз(t) = 4Q2кз(t) - 4Q3кз + Q4кз(t) Qр.об(t) = 2Q2об(t) - Q4об(t)   ≤0,382 ≤0,618

 

 

Рис. 3.34. Схемы общего (а) и раздельного (б) динамического резервирования

с коммутирующими устройствами

Динамическое резервирование. При таком резервировании появляется возможность использовать облегченный или ненагруженный резерв, если допустимы необходимые для включения резерва перерывы в работе ЭС, и возникает необходимость в применении дополнительных элементов - коммутирующих уст­ройств для подключения резерва. Включение резервных элемен­тов может производиться вручную или автоматически, комму­тирующие устройства могут быть раздельными или общими для параллельно включенных элементов или цепей (блоков) элек­трической системы (рис.3.34).

Если пренебречь влиянием коммутирующих устройств и счи­тать их абсолютно надежными, то при нагруженном резерве надежность ЭС с динамическим резервированием будет равна надежности системы с постоянно включенным резервом. Приоблегченном и ненагруженном резерве динамическое резервиро­вание повышает надежность системы.

Влияние надежности коммутирующих устройств на надеж­ность резервированной системы достаточно просто учитывается для систем с нагруженным резервом.

ВЭС с общим резервированием и нагруженным резервом в нормальном режиме все выключатели Квключены и основная и резервные цепи из п элементов находятся под на­грузкой. При отказе основной цепи выключатель К. отключает ее, в случае отказа первой резервной цепи она отключается вы­ключателем К1и т. д.

Отказ системы происходит при отказе основной и всех ре­зервных цепей, состоящих из п элементов и выключателя К каждая. В предположении, что выключатели и элементы систе­мы отказывают независимо, можно найти вероятность безотказ­ной работы одной цепи из п элементов

и вероятность безотказной работы всей системы из m + 1 таких параллельных цепей

Рс.о = ,(3.105)

где Pki - вероятность безотказной работы выключателя i-й цепи.

При одинаковой надежности всех п элементов Рэ и одинако­вой надежности выключателей Pk формула (3.105) примет вид

Pс.о = 1 - (1 - PkPэn)m+1. (3.106)

Из (3.106) при заданной величине Рс.о = находят требуе­мое значение числа резервных цепей

m = ln

При экспоненциальном законе распределения для элементов Pэ = ехр(- λ эt) и выключателей Рk = ехр(- λkt) системы сред­няя наработка до отказа и вероятность безотказной работы си­стемы определяются по формулам (3.98), в которых в этом слу­чае интенсивность отказов цепи рассчитывается по формуле

ВЭС с раздельным резервированием и нагру­женным резервом все выключатели К в начальный период ра­боты системы включены, при отказе какого-либо основного или резервного элемента соответствующий выключатель отключает этот отказавший элемент. Отказ системы происходит при отка­зе какого-либо основного элемента j (или его выключателя K) ивсех резервирующих его элементов i (или всех их выключате­лей Ki).

Вероятность безотказной работы всей системы с раздельным резервированием с учетом вероятности безотказной работы вы­ключателей

(3.107)

Для системы с равнонадежными элементами и выключате­лями выражение (3.107) примет вид

Рс.р = [1-(1 - PkPэ)m+1]n. (3.108)

При экспоненциальном законе распределения для элементов λэ = const и выключателей λk = const величины Tср.р и Рс.р рас­считывают по формулам (3.101) и (3.102), в которых в этом случае принимают

λ = λэ + λk.

Из полученных формул видно, что при динамическом резер­вировании с нагруженным резервом за счет наличия коммутирующих устройств К ниже показатели надежности системы по сравнению с постоянным резервированием. Динамическое ре­зервирование с нагруженным резервом целесообразно приме­нять в случаях, когда недопустимы перерывы в работе системы и отказавший элемент (систему) нужно отключать, чтобы не произошло резкого изменения режима работы резервированной системы.

Расчеты по формулам (3.106) и (3.108), определяющим ве­роятность безотказной работы систем, представленных на рис.3.34, показывают, что при одинаковой надежности элемен­тов и одинаковой достаточно высокой надежности выключате­лей при тех же значениях п и т вероятность безотказной рабо­ты ЭС с раздельным резервированием и выключателем у каж­дого элемента, выше, чем у ЭС с общим резервированием и вы­ключателем в каждой цепи.

Таким образом, раздельное резервирование является более эффективным, чем общее, и в случае динамического резервиро­вания.

Эффективность динамического резервирования возрастает, когда оно реализуется в виде резервирования замеще­нием с ненагруженным или облегченным резервом. Ниже рас­сматривается резервирование замещением с ненагруженным ре­зервом; очевидно, что показатели надежности при облегченном резерве будут иметь промежуточные значения между показате­лями при нагруженном и ненагруженном резерве.

В резервированной системе с общим резервированием и не­нагруженным резервом сначала работает основная цепь с вы­ключателем К (рис.3.34, а), при ее отказе вместо нее включа­ется выключателем Ki одна из резервных цепей. Таких замеще­ний может быть не более т; (m+1)-йотказ приводит к отказу системы в целом.

Для упрощения анализа рассматривается система с экспо­ненциальным законом распределения для элементов Рij(t) = ехр(-λ jt) и выключателей Pki(t) = exp(- λkit). Тогда вероят­ность безотказной работы одной цепи из п элементов с выклю­чателем

Pi(t) = (3.109)

где λ i = λjn + λk - интенсивность отказов i-й цепи резервирован­ной системы.

Средняя наработка до отказа i-й цепи с учетом (3.109) со­ставит

Tср.i =

На каждом из промежутков ti работает и может отказывать только одна цепь, поэтому средняя наработка до отказа всей системы будет

Tcp.o = Tcp.i(m+1). (3.110)

Вероятность безотказной работы резервированной ЭС с не­нагруженным резервом в течение времени t можно определить в предположении, что при отказе включенной одной цепи про­исходит мгновенное переключение на одну из резервных цепей, и отказ системы произойдет после отказа основной цепи и всех т резервных цепей. Тогда вероятность того, что одна цепь из п элементов и выключателя К, имеющая интенсивность отказов λi за время t откажет zраз (с учетом возможности ее замен ре­зервными), может быть определена по закону Пуассона

Pz(t) = (λit)z/z! exp(-λit), (3.111)

где λit - среднее число отказов цепи за время t.

Вся резервированная система в течение времени t будет ра­ботать безотказно, если за это время будет иметь место хотя бы одно из следующих несовместных событий: Со — все цепи си­стемы работали безотказно, С1 - одна цепь отказала, Cz - от­казало z цепей из (т+1); Ст - отказали т цепей из (m+1).

Таким образом, вероятность безотказной работы всей резер­вированной системы определится согласно теореме сложения вероятностей полной группы несовместных событий С с учетом (3.111)

Рс.о(t) = (3.112)

Из сравнения полученных формул (3.110) и (3.112) с соот­ветствующими формулами при нагруженном резерве следует, что при ненагруженном резерве увеличиваются вероятность без­отказной работы и средняя наработка до отказа.

Вместе с тем достичь увеличения средней наработки до от­каза более чем на порядок за счет такого резервирования прак­тически невозможно из-за наличия коммутирующих устройств и вспомогательной аппаратуры. С ростом числа резервных эле­ментов (блоков, систем) масса, габариты и стоимость вспомога­тельного оборудования существенно ограничивают достижимый Уровень надежности при резервировании, позволяя на практике использовать резервирование с m ≤ 2... 3.

Если ЭС состоит из групп одинаковых элементов, то целесо­образно использовать скользящее резервирование замещением, когда один или несколько резервных элементов (блоков) т системы могут заменить любой из отказавших ос­новных элементов (блоков) системы (рис.3.35).

Рис. 3.35. Схема скользящего ре­зервирования

 

Если скользящее резервиро­вание - с ненагружениым резер­вом, отказы элементов независи­мы и имеют экспоненциальное распределение, устройство поис­ка отказавшего элемента и вклю­чения вместо него резервного (коммутатор) абсолютно надеж­но, то вероятность безотказной работы системы в течение времени t, т. е. вероятность отказа за это время не более т элемен­тов, определяется согласно закону Пуассона аналогично (3.112)

Pc.c(t) = (3.113)

где λэ - интенсивность отказов элемента.

Средняя наработка до отказа системы, т. е. математическое ожидание времени наступления (m+1)-го отказа определяют обычным образом:

Тср.с=1/(пλэ)+т/(пλэ) = (т+1)(пλэ). (3.114)

Эффективность скользящего резервирования электрической системы можно оценить путем сравнения зависимостей (3.113) и (3.114) для системы со скользящим резервированием с соот­ветствующими зависимостями Рс = ехр (— эt) и Тср=1/(пλэ) для нерезервируемой системы

(t) = Pc.c(t)/Pс(t) = 1+ nλэt + (nλэt)2/2! +...+ (nλэt)m/m!;

(t) = Tcp.c/Tcp= (m+1). (3.115)

Из (3.115) следует, что с точки зрения увеличения вероятно­сти безотказной работы и средней наработки до отказа ЭС эф­фективность скользящего резервирования по сравнению с соот­ветствующей нерезервируемой системой растет с увеличением числа резервных элементов, увеличением времени работы систе­мы и числа резервируемых основных элементов (блоков) си­стемы.

Скользящее резервирование может быть выгоднее экономи­чески, так как оно реализуется при меньшем количестве резерв­ных элементов, чем основных.

Оптимальное резервирование. При практической реализации резервирования ЭС возникает задача об оптимальном резерви­ровании, т. е. обеспечении требуемой надежности системы при наименьших затратах.

Количество и номенклатура резервных элементов (блоков) ЭС можно определять исходя из следующих двух постановок задачи оптимального резервирования:

1) заданную вероятность безотказной работы системы нужно обеспечить при минимальных затратах Сmiп на резервные элементы, т. е. при Cmin;

2) при заданных затратах на резервные элементы нужно обеспечить максимально возможную вероятность безотказной работы системы Рс.mах, т. е. при Рс.mах.

Для решения обеих задач сначала определяют число элемен­тов (участков) резервирования системы, рассчитывают вероят­ности безотказной работы каждого участка и системы в целом, определяют стоимость каждого участка.

Затем для решения первой задачи должен быть найден ми­нимум функции С = при условии Рс = где С - стоимость резервированной системы, Ci - стоимость одного резервного элемента i-гo участка систе­мы; С0i - начальная стоимость i-гo участка системы; mi - чис­ло резервных элементов на i-м участке; Pi(mi) - вероятность безотказной работы i-го участка системы при наличии у него mi -резервных элементов.

Решение второй задачи оптимального резервирования сводится к отысканию максимума функции Рс = при условии С =

Расчет оптимальной резервированной ЭС представляет со­бой многошаговый процесс. На первом шаге отыскивается такой участок резервирования, прибавление к которому одного резерв­ного участка дает наибольший прирост вероятности безотказной работы системы в пересчете на единицу стоимости. На втором шаге определяется следующий участок (включая и резервиро­ванный ранее участок), добавление к которому одного резерв­ного участка дает наибольшее увеличение вероятности безотказ­ной работы системы, и т. д. Вычисления выполняют в табличной форме; расчет прекращается на таком шаге

М = , когда для первой задачи выполняется условие Рc —1)< (М), а для второй задачи - С(М)

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.