Способы запирания тиристоров — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Способы запирания тиристоров

2017-11-21 1718
Способы запирания тиристоров 0.00 из 5.00 0 оценок
Заказать работу

Как уже сказано, для выключения тиристора нужно каким-либо способом снизить его прямой ток до нуля на некоторый промежуток времени, определенный временем рассасывания неосновных носителей. Это в основном и отличает тиристор – прибор с частичной, неполной управляемостью от, например, транзистора – полностью управляемого прибора, который можно и включить и выключить по цепи управления.

Выключение проводящего ток тиристора можно осуществлять различными способами. Проще всего выключать тиристор, если он работает в цепи переменного тока. Тогда под действием переменного напряжения питающей сети ток тиристора сам снижается до нуля и происходит его выключение (коммутация). Такой способ коммутации получил название естественной и широко применяется в силовых преобразовательных устройствах переменного тока. Сложнее обстоит дело в цепях постоянного тока. Там необходимы специальные устройства, обеспечивающие принудительное выключение тиристора в нужный момент времени. Такие устройства называют узлами искусственной (принудительной) коммутации. В основе построения коммутационных узлов лежат следующие способы:

1. Введение в цепь тиристора колебательных LC -контуров – последовательных или параллельных (рис. 7.6, а, б). Тиристор закрывается в момент перехода через нуль тока в колебательном контуре. Время включенного состояния коммутируемого тиристора определяется параметрами схемы искусственной коммутации и может быть изменено только изменением этих элементов, что сложно. Поэтому такой способ используется сравнительно редко и только в устройствах с т.н. частотно-импульсной модуляцией, когда длительность интервала проводимости тиристора постоянна, а регулируется частота их следования.

2.
 
 

Выключение тиристора путем изменения полярности напряжения между катодом и анодом. Для этого используют предварительно заряженный конденсатор, который в нужный момент времени подключают между анодом и катодом тиристора в запирающей полярности (рис. 7.6, в) путем замыкания ключа К.

Описанными способами удается придать тиристору свойства полностью управляемого вентиля, но схема сильно усложняется.

Разновидности тиристоров.

 
 

На основе обычных тиристоров созданы различные их разновидности, имеющие более узкое назначение. Наибольшее применение в практике нашли симметричные тиристоры, запираемые тиристоры и оптотиристоры. Их УГО показаны на рис. 7.7.

Симметричные тиристоры или короче симисторы (англ. аббревиатура TRIAC) представляют собой соединение структуры двух встречно включенных тиристоров в одном приборе с общим электродом управления. Если подать на управляющий электрод отпирающий сигнал, симистор включается при любой полярности напряжения, приложенного между силовыми электродами. Эти приборы используются для включения-отключения нагрузки и для фазового управления в цепях переменного тока.

Запираемый тиристор (ЗТ) (GTO – Gate turn off thyristor) тиристор, который может быть заперт путем подачи на управляющий электрод импульса тока отрицательной полярности. Структура ЗТ, как и у обычного тиристора – четырехслойная с тремя силовыми выводами. Однако конструктивное исполнение отличается. Для увеличения поверхности протекания тока от управляющего электрода к катоду при одновременном сокращении путей его протекания катод выполнен в виде большого числа концентрических окружностей, имеющих общий контакт с управляющим электродом. При таком катоде быстрый рост запирающего тока управляющего электрода приводит к быстрому уменьшению тока катода и выключению ЗТ. Необходимый для запирания отрицательный ток управляющего электрода составляет примерно 30 % от максимально допустимого значения запираемого тока. Однако энергия выключения мала, так как импульс очень короткий (10 – 100 мкс).

В настоящее время созданы запираемые тиристоры с максимальными значениями напряжения до 6 кВ и тока до 6 кА.

Оптоуправляемый тиристор (оптотиристор) включается воздействием потока оптического излучения на ПП-структуру, что вызывает генерацию дополнительных носителей в облучаемой области и эквивалентно току управления. Пояснить конструкцию.

Защита СПП

Защита при токовых перегрузках в аварийных режимах

Способность выдерживать перегрузки и перенапряжения у СПП гораздо меньше, чем у электромеханических устройств. В силовой цепи в случае короткого замыкания сверхтоки могут достигать десятков и даже сотен тысяч ампер. Однако СПП могут выдерживать импульсы токов только в несколько тысяч ампер. Поэтому необходимо решать проблему защиты как самих СПП, так и аппаратуры в целом.

Защита СПП должна безопасно прерывать возможные сверхтоки за очень короткое время и ограничивать тепловую энергию (ò i 2 dt), пропускаемую к устройству во время отключения цепи. Для этого полный ò i 2 dt устройства защиты должен быть меньше, чем ò i 2 dt, который может выдержать полупроводник.

Для защиты СПП при токовых перегрузках в аварийных режимах обычно используют специальные быстродействующие предохранители с плавкой вставкой или жидкометаллические предохранители.

Быстродействующие предохранители имеют специальную конструкцию, обеспечивающую более быстрое плавление вставки, нежели у обычных предохранителей такого же номинала.

В жидкометаллическом предохранителе в качестве плавкого элемента применяется жидкий металл (галлий, сплав галлий/индий/ олово и др.). При срабатывании металл из жидкого состояния переходит в парообразное. Возникающее при этом в патроне давление через специальный шток воздействует на расцепитель автоматического выключателя, который и осуществляет отключение электрической цепи. Сразу же после этого пары металла вновь переходят в жидкое состояние (через 0,5 – 2 мс) и предохранитель готов к повторному срабатыванию.

Сверхток может возникнуть не только при коротком замыкании во внешней цепи. Случайный выход за пределы безопасного диапазона может повредить СПП. Чаще всего при этом возникает короткое замыкание. Сверхток короткого замыкания приводит к расплавлению проводников и к взрыву СПП. Это может вывести из строя окружающие компоненты и вызвать пожар в оборудовании. Поэтому рекомендуется включать быстродействующие предохранители в последовательно с каждым СПП. Даже если предохранитель не успеет защитить от сгорания сам СПП, то он предотвратит дальнейшие разрушения и ограничит энергию, выделившуюся в процессе неисправности.

Помимо сверхтоков, необходимо защищать СПП от выходе за пределы ОБР в динамических режимах работы при помощи снабберов.

Защита транзисторов

Биполярные транзисторы весьма чувствительны к перенапряжениям и к кратковременным перегрузкам по току. Поэтому необходимо использовать схемы ЦФТП, формирующие необходимые траектории как при включении, так и выключении (рис. 7.8, а).

 
 

В отличие от биполярных МОП-транзисторы менее подвержены пробою. Обычно ограничиваются RС- цепью,подключенной параллельно транзистору (рис. 7.8, б).

Защита тиристоров

Тиристоры являются приборами, критичными к скоростям нарастания тока в открытом состоянии (di/dt) и напряжения в закрытом состоянии (du/dt).

При включении тиристора в первый момент времени возникает проводящий канал небольшого сечения между анодом и катодом, и только через некоторое время проводящей становится вся полупроводниковая структура. При высоких значениях di/dt возникает неравномерная плотность тока в сечении полупроводника. В области с максимальной плотностью тока возникает локальный перегрев с последующим повреждением структуры. Основной причиной высоких значений di/dt является малое значение индуктивности в контуре, содержащем источник напряжения и включенный прибор.

Для снижения значения di/dt обычно включают последовательно с тиристором реактор с индуктивностью, ограничивающей скорость нарастания тока. В ряде случаев оказывается целесообразным включать насыщающиеся реакторы, которые до наступления момента насыщения ограничивают ток тиристора. После завершения процесса включения тиристора реактор насыщается, его реактивное сопротивление резко уменьшается и происходит дальнейший рост тока до установившегося значения. Применение насыщающегося реактора позволяет защитить тиристор от высоких скоростей изменения тока di/dt на первом этапе включения, когда это наиболее опасно.

Впрочем, в большинстве случаев внутреннее индуктивное сопротивление источников напряжения, входящих в цепь включаемого тиристора, оказывается достаточным, чтобы не вводить дополнительные индуктивности.

Большая величина du/dt вызывает перезаряд барьерных емкостей. Вследствие этого в тиристоре возникает емкостной ток, которые может вызвать ложное включение тиристора [четвертая причина включения]. Для защиты тиристора от высоких значений du/dt обычно используют демпфирующую RС-цепь (см. рис. 7.8, б). Эта же цепь защищает тиристор от импульсных перенапряжений.


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.