Изучение гармонических колебаний — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Изучение гармонических колебаний

2017-11-17 330
Изучение гармонических колебаний 0.00 из 5.00 0 оценок
Заказать работу

Цель работы: определить ускорение силы тяжести с помощью математического маятника, определить коэффициент жесткости пружины и проверить формулы периода колебаний физического маятника.

Приборы и принадлежности: математический маятник, пружинный маятник, электросекундомер, метр, набор грузов.

ВВЕДЕНИЕ

Гармоническим называют такое колебательное движение, при котором на тело массы m действует возвращающая сила F, пропорциональная отклонению x от положения равновесия.

На рисунке 1 показан пружинный маятник, расположенный горизонтально. Это шарик массой m, прикрепленный к пружине обладающей упругостью k.

Если шарик вывести из положения равновесия (растянуть или сжать пружину), то вследствии ее деформации возникает сила упругости, возвращающая шарик в положение равновесия

Рисунок 1.

(1)

где k – коэффициент возвращающей силы. Знак минус означает противоположность направлений х и F. Эта сила сообщает телу ускорение а и может быть выражена по закону Ньютона:

(2)

- ускорение. Из формул (1) и (2) получаем дифференциальное уравнение гармонических колебаний

(3)

Решением этого уравнения является уравнение вида:

(4)

Здесь А – амплитуда колебаний,

j - начальная фаза,

(wt+j) – фаза колебаний в момент времени t,

w - циклическая частота. Согласно решению уравнению (3)

(5)

Так как циклическая частота зависит только от свойств колеблющейся системы (массы и упругости), то ее называют собственной циклической частотой системы.

Примерно по гармоническому закону происходит движение математического маятника (рис. 2), первоначально выведенного из положения равновесия на малый угол a £ 50.

Рисунок 2.

Напомним, что математическим маятником называется материальная точка, подвешенная на нерастяжимой нити. Действующая на материальную точку массой m сила тяжести Р=mg раскладывается на две взаимно перпендикулярные составляющие, одна из которых F1 растягивает нить, а вторая –F вызывает ускорение в сторону положения равновесия, ее называют возвращающей силой. Она равна

Относительно точки подвеса тело совершает вращательное движение; поэтому для вывода уравнения движения надо воспользоваться законом динамики для вращательного движения.

Возвращающая сила создает возвращающий момент силы

Так как угол a мал, то sina» a (здесь a выражен в радианах). Поэтому

(7)

Знак (-) указывает, что сила тяжести препятствует отклонению тела на угол a. Этот момент силы вызовет движение шарика с угловым ускорением равным второй производной угла по времени, т.е.

(8)

где I – момент инерции шарика относительно точки подвеса.

(9)

Подставив уравнение (9) в уравнение (8) и приравняв правые части полученного уравнения и уравнения (7) получим уравнение движения математического маятника

(10)

Если сравним его с уравнением (3), то собственная циклическая частота математического маятника будет зависеть от длины и ускорения силы тяжести, т.е.

(11)

Это значит, что роль массы в этом случае выполняет длина нити, а упругость системы – ускорение силы тяжести.

Известно, что период колебаний связан с частотой соотношением:

(12)

Подставив в уравнение (12) значение w для пружинного маятника или для математического (11), получим для математического маятника

(13)

Это уравнение используют для измерения ускорения силы тяжести с помощью математического маятника.

Из уравнения (13) легко определить ускорение свободного падения:

(14)

Непосредственное измерение длины маятника l не представляется возможным, т.к. центр тяжести лабораторного маятника не совпадает точно с геометрическим центром шарика. Поэтому при определении ускорения силы тяжести наблюдают колебания маятника для различных l и определяют периоды колебаний Т1 и Т2. Тогда g легко выразить через Т1 и Т2 и разность длин маятников. Окончательно имеем:

(15)


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.