Штамповые стали. Марки, свойства, применение. ТО изделий. — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Штамповые стали. Марки, свойства, применение. ТО изделий.

2017-11-16 257
Штамповые стали. Марки, свойства, применение. ТО изделий. 0.00 из 5.00 0 оценок
Заказать работу

Штамповые стали — стали, применяемые для изготовления инструментов, необходимых для обработки металлов давлением, таких как штампы, ролики, валики, пуансоны и т. д. Своё название получили по виду самого используемого инструмента.

Наиболее ответственные детали штампов, пресс-форм и форм для литья металлов под давлением изготовляются из углеродистых и легированных инструментальных сталей определенных марок, выделенных в особую категорию и называемых штамповыми.

Штамповые подразделяются на три основные группы, а именно:

1 — штамповые для деформирования металлов в холодном состоянии;

2 — штамповые для деформирования металлов в горячем состоянии;

3 — штамповые, устойчивые против коррозии.

К каждой из указанных групп сталей в соответствии с их назначением предъявляются особые требования, характеризующие данную группу.

Важнейшее требование, предъявляемое ко всем видам штамповых сталей — сочетание твердости с высокой вязкостью. Штамповые стали должны обладать также особыми технологическими свойствами, к которым относятся:

хорошая обрабатываемость, хорошая прокаливаемость, малая чувствительность к перегреву, малая деформация при термической обработке, небольшая чувствительность к обезуглероживанию при нагреве, хорошая шлифуемость.

Стали инструментальные углеродистые. Инструментальные углеродистые стали выпускаются с содержанием углерода от 0,65% до 1,35% (У7, У7А, У8, У8А, У8Г, У8ГА, У9, У9А, У10, У10А, У11, УНА, У12, У12А, У13 и У13А)

Стали марок У12, У12А, У13 и У13А, имеющие наиболее высокое содержание углерода и отличающиеся большой хрупкостью после закалки, при изготовлении штампов и пресс-форм не применяются. Избегают применять и сталь У9, У9А, которая при закалке получает более крупное зерно, имеет большую склонность к короблению и изменению размеров, а по прочности и пластичности уступает стали У10, У10А. Сталь УН и У11А применяется редко.

 

 

40. Твердые сплавы. Марки, свойства, применение. Способ изготовления.

Твёрдые сплавы — твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвердых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанные кобальтовой металлической связкой, при различном содержании кобальта или никеля.

Твердые сплавы различают по металлам карбидов, в них присутствующих: вольфрамовые — ВК2, ВК3, ВК3М; титано-вольфрамовые — Т30К4, Т15К6; титано-тантало-вольфрамовые — ТТ7К12, ТТ10К8Б. Безвольфрамовые ТНМ20.

По химическому составу твердые сплавы классифицируют:

§ вольфрамокобальтовые твердые сплавы (ВК);

§ титановольфрамокобальтовые твердые сплавы (ТК);

§ титанотанталовольфрамокобальтовые твердые сплавы (ТТК).

Твердые сплавы по назначению делятся (классификация ИСО) на:

Из-за дефицита вольфрама разработана группа безвольфрамовых твердых сплавов, называемых керметами. Эти сплавы по сравнению с вольфрамовыми твердыми сплавами имеют меньшую прочность на изгиб, ударную вязкость, чувствительны к перепаду температур из-за низкой теплопроводности, но имеют преимущества — повышенную теплостойкость (1000 °C) и низкую схватываемость с обрабатываемыми материалами, благодаря чему не склонны к наростообразованию при резании. Поэтому их рекомендуют использовать для чистового и получистового точения, фрезерования.

Твердые сплавы ввиду своей высокой твердости применяются в следующих областях: Обработка резанием конструкционных материалов: резцы, фрезы, сверла, протяжки и прочий инструмент; Оснащение измерительного инструмента (оснащение точных поверхностей микрометрического оборудования и опор весов), а так же клеймение, волочение, штамповка, прокатка

 

Коррозия.

Корро́зия (от лат. corrosio — разъедание) — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде. Гидратированный оксид железа Fe(OН)3 и является тем, что называют ржавчиной.

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозииполимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Коррозия может быть следующих видов:

§ газовая коррозия;

§ атмосферная коррозия;

§ коррозия в неэлектролитах;

§ коррозия в электролитах;

§ подземная коррозия;

§ биокоррозия;

§ коррозия под воздействием блуждающих токов.

По условиям протекания коррозионного процесса различаются следующие виды:

§ контактная коррозия;

§ щелевая коррозия;

§ коррозия при неполном погружении;

§ коррозия при полном погружении;

§ коррозия при переменном погружении;

§ коррозия при трении;

§ межкристаллитная коррозия;

§ коррозия под напряжением.

Главная классификация производится по механизму протекания процесса. Различают два вида:

§ химическую коррозию;

§ электрохимическую коррозию.

Коррозия неметаллов

По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Но следует учитывать, что механизмы и кинетика процессов для неметаллов и металлов будут разными.

Коррозия металлов

Коррозия металлов — разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой.[2] Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение». Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.