Особенности строения плазматических мембран у различных организмов. — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Особенности строения плазматических мембран у различных организмов.

2017-11-15 942
Особенности строения плазматических мембран у различных организмов. 0.00 из 5.00 0 оценок
Заказать работу

Особенности строения плазматических мембран у различных организмов.

Мембраны растительной клетки. Структура. Толщина биомембран не превышает 6-10 нм. Согласно жидкостно-мозаичной гипотезе строения биологических мембран основу мембраны составляет двойной слой фосфолипидов с некоторым количеством других липидов (галактолипидов, стеринов, жирных кислот и др.), причем липиды повернуты друг к другу своими гидрофобными концами (рисунок 9). Участки молекул полярных липидов, образованные очень часто ненасыщенными жирными кислотами, и стерины обеспечивают несколько разрыхленное (жидкое) состояние бислоя. Полярной частью молекула фосфолипида хорошо взаимодействует с водной средой. Кратная связь в довольно длинный неполярном «хвосте» фосфолипидов находится в цис-конфигурации, поэтому «ножка» не прямая, а как бы изогнутая (рисунок 10 а).

Если образец фосфолипида размешать в водной среде, образуются так называемые мицеллы (рисунок 10 б) построенные так, что полярные головы обращены в водный слой, а неполярные хвосты — внутрь мицеллы.
Способность некоторых липидов к «самосборке» в двойные слои является очень важным свойством, имеющим решающую роль в построении клеточных мембран.

Наружная и внутренняя стороны биологических мембран обращены в качественно разные гидрофильные среды. Это является причиной асимметричного строения мембран — в наружном слое плазмалеммы содержится больше стеринов и гликолипидов.

Липиды, входящие в состав мембранного бислоя, не закреплены жестко, а непрерывно меняются местами. Перемещения липидных молекул бывают двух типов:

в пределах своего монослоя (латеральная диффузия);

путем перестановки двух липидных молекул, противостоящих друг другу в двух монослоях («флип-флоп»).

При латеральной диффузии молекулы липидов претерпевают миллионы перестановок в секунду, а скорость ее составляет 5—10 мкм/с. Перестановки молекул липидов из одного монослоя в другой происходят значительно реже, но могут ускоряться мембранными белками.

В состав мембран входят разные в функциональном отношении белки: белки-ферменты, белки, выполняющие функции насосов, переносчиков, ионных каналов, белки-регуляторы и структурные белки (рисунок 9).

Если такие специализированные протеиновые комплексы:

погружены в липидную фазу и удерживаются гидрофобными связями (липопротеины), их называют «интегральные белки»;

удерживаются на внутренней и внешней поверхностях мембран электростатическими связями (гидрофильные белки), взаимодействуя с гидрофильными головками полярных липидов, то их называют «периферийные белки».

Периферийные белки ассоциированы с мембраной за счет присоединения к интегральным белкам или липидному бислою слабыми связями: водородными, электростатическими, солевыми мостиками. Они в основном растворимы в воде и легко отделяются от мембраны без ее разруше­ния. Некоторые периферийные белки обеспечивают связь между мембранами и цитоскелетом.

Интегральные белки мембран нерастворимы в воде. На положение белков в мембране оказывают влияние состав фосфолипидов (свободных и связанных), величина электростатического заряда мембраны.

В последнее время показано существование третьей группы белков, так на­зываемых «заякоренных» в мембране белков. Эти белки фиксируются в мембране за счет специальной молекулы, в качестве которой могут высту­пать жирная кислота, стерин, изопреноид или фосфатидилинозитол.

Особенностью липидного состава плазмалеммы по сравнению с другими мембранами растительной клетки является высокое содержание стеринов, но в отличие от плазматической мембраны животной клетки для плазмалеммы характерна высокая вариабельность их состава в зависимости от вида расте­ния, органа и ткани.

Функции мембран

1) Структурная функция. У эукариотической клетки в отличие от прокариотической клетки множество внутренних отсеков (компартментов), окруженных мембранами, и различаю­щихся по степени активности содержащихся в них химических сое­динений и систем, регулирующих их превращения. Компартменты эукариотической клетки называются органеллами. Одномембранные структурные компоненты клеток: плазмалемма, эндоплазматический ретикулум, комплекс Гольджи, лизосомы, вакуоль.

Двухмембранные структурные компоненты клеток: ядро, митохондрии, пластиды.

2) Барьерная функция. Для клеток и субклеточных частиц мембраны служат механическим барьером, отделяющим их от внешнего пространства.

3) Контроль поглощения и секреции веществ (транспортная функция). В плазмалемме находятся множество транспорт­ных систем, прежде всего для транспорта ионов, — ионные каналы, ионные переносчики и ионные насосы. Благодаря им осуществляется очень точный и селективный транспорт ионов как внутрь клетки, так и наружу, т.е. оптималь­ное снабжение клетки необходимыми ионами.

4) Аккумуляция и трансформация энергии. Плазмалемма любой клетки является энергизованной мембраной, т. е. на ней существует градиент электрохимиче­ского потенциала ∆μН+, который используется для выполнения полезной ра­боты, прежде всего для активного переноса веществ через мембрану.

5) Размещение и обеспечение работы ферментов. В плазмалемме находится множество ферментов. Это ферменты построения клеточной стенки (целлюлозосинтаза), ферменты сигнальных систем (фосфолипазы С, А; аденилатциклаза)

6) Рецепторная функция. Плазмалемма клетки — это мозаи­ка различных рецепторов эндогенных сигналов (прежде всего фитогормонов) и внешних воздействий. Температура изменяет жесткость (текучесть) мембра­ны, т.е. ее механические свойства. Изменение этих свойств плазмалеммы при­водит к открытию или закрытию находящихся в ней механосенсорных ионных каналов.

7) Сигнальная функция. Многие компоненты плазмалеммы после восприятия сигналов служат источником вторичных мессенджеров — молекул, которые «передают» сигнал по эстафете и усиливают его.

Клеточная стенка обеспечивает механическую прочность клетки, придавая ей жесткую (ригидную) структуру, благодаря чему клетка выдерживает высокое внутреннее осмотическое давление (5--20 МПа). Кроме того, клеточная стенка может обусловливать некоторую степень избирательной проницаемости для низкомолекулярных веществ, а также способность взаимодействовать с другими клетками, вирусами и физическими поверхностями. Строение клеточной стенки у разных организмов имеет свои особенности.

Клетки большинства тканей многоклеточных животных не содержат выраженной клеточной стенки. Растительные клетки, напротив, имеют очень сложную клеточную стенку, построенную из целлюлозных микрофибрилл, погруженных в матрикс (из пектина и гемицеллюлоз).

Клеточные стенки дрожжей и мицелиальных грибов состоят из гомо- и гетерополисахаридов (глюканов, хитина) и белкового комплекса, Толщина этих слоев достигает 1 мкм.

Клеточная стенка громположительных бактерий построена в основном из гетерополисахарида муреина, содержащего аминокислотные «мостики. У грамотрицательных бактерий слой муреина невелик, но в клеточной стенке присутствует наружная мембрана, построенная из фосфолипидов, белков и липопо-лисахарида, обеспечивающая некоторую степень избирательной проницаемости и содержащая рецепторы фагов и антигены. Толщина клеточной стенки составляет от 15 до 80 нм

 

Мембраноактивные структуры.

В настоящее время показано существование трех типов таких транспортных белков: каналы, переносчики, помпы.

Каналы — это трансмембранные белки, которые действуют как поры. Иногда их называют селективными фильтрами. Транспорт через каналы, как правило, пассивный. Специфичность транспортируемого вещества определяется свойствами поверхности поры. Как правило, через каналы передвигаются ионы. Скорость транспорта зависит от их величины и заряда. Если пора открыта, то вещества проходят быстро. Однако каналы открыты не всегда. Имеется механизм «ворот», который под влиянием внешнего сигнала открывает или закрывает канал. Долгое время представлялась труднообъяснимой высокая проницаемость мембраны (10 мкм/с) для воды — вещества полярного и нерастворимого в липидах. В настоящее время открыты интегральные мембранные белки, представляющие канал через мембрану для проникновения воды — аквапорины. Способность аквапоринов к транспорту воды регулируется процессом фосфорилирования. Было показано, что присоединение и отдача фосфатных групп к определенным аминокислотам аквапоринов ускоряет или тормозит проникновение воды, но не влияет на направление транспорта.

Переносчики — это специфические белки, способные связываться с переносимым веществом. В структуре этих белков имеются группировки, определенным образом ориентированные на наружную или внутреннюю поверхность. В результате изменения конформации белков вещество передается наружу или внутрь. Поскольку для транспорта каждой отдельной молекулы или иона переносчик должен изменить конфигурацию, скорость транспорта вещества в несколько раз меньше, чем происходит перенос через каналы. Показано наличие транспортных белков не только в плазмалемме, но и в тонопласте. Транспорт с помощью переносчиков может быть активным и пассивным. В последнем случае такой транспорт идет по направлению электрохимического потенциала и не требует затрат энергии. Этот тип переноса называется облегченной диффузией. Благодаря переносчикам он идет с большей скоростью, чем обычная диффузия.

Согласно представлениям о работе переносчиков, ион (М) реагирует со своим переносчиком (X) на поверхности мембраны или вблизи нее. Эта первая реакция может включать или обменную адсорбцию, или какое-то химическое взаимодействие. Ни сам переносчик, ни его комплекс с ионом не могут перейти во внешнюю среду. Однако комплекс переносчика с ионом (MX) подвижен в самой мембране и передвигается к ее противоположной стороне. Здесь этот комплекс распадается и высвобождает ион во внутреннюю среду с образованием предшественника переносчика (X´). Этот предшественник переносчика снова передвигается к внешней стороне мембраны, где вновь превращается из предшественника в переносчик, который на поверхности мембраны может соединиться с другим ионом. При введении в среду вещества, способного образовать прочный комплекс с переносчиком, перенос вещества блокируется. Опыты, проведен­ные на искусственных липидных мембранах, показали, что перенос ионов может проходить под влиянием некоторых антибиотиков, вырабатываемых бактериями и грибами, — ионофоров (рисунок 12). Транспорт с участием переносчиков обладает свойством насыщения, т. е. при увеличении концентрации веществ в окружающем растворе скорость поступлении сначала возрастает, а затем остается постоянной. Это объясняется ограниченным количеством переносчиков.

Переносчики специфичны, т. е. участвуют в переносе только определенных веществ и, тем самым, обеспечивают избирательность поступления. Это не исключает того, что один и тот же переносчик может обеспечивать перенос нескольких ионов. Например, переносчик К+, обладающий специфичностью для этого иона, также переносит Rb+ и Na+, но не транспортирует Сl- или незаряженные молекулы сахарозы. Транспортный белок, специфичный для нейтральных кислот, хорошо переносит аминокислоты глицин, валин, но не аспарагин или лизин. Благодаря разнообразию и специфичности белков осуществляется избирательная их реакция с веществами, находящимися в среде, и, как следствие, их избирательный перенос.

Насосы (помпы) — интегральные транспортные белки, осуществляющие активное поступление ионов. Термин «насос» показывает, что поступление идет с потреблением свободной энергии и против электрохимического градиента. Энергия, используемая для активного поступления ионов, поставляется процессами дыхания и фотосинтеза и в основном аккумулирована в АТФ. Как известно, для использования энергии, заключенной в АТФ, это соединение должно быть гидролизовано по уравнению АТФ + НОН → АДФ + Фн. Ферменты, осуществляющие гидролиз АТФ, называются аденозинтрифосфатазы (АТФазы). В мембранах клеток обнаружены различные АТФазы: К+/Na+–АТФаза; Са2+– АТФаза; Н+–АТФаза. Н+–АТФаза (Н+–насос или водородная помпа) является основным механизмом активного транспорта в клетках растений, грибов и бактерий. Н+– АТФаза функционирует в плазмалемме и обеспечивает выброс протонов из клетки, что приводит к образованию электрохимической разности потенциалов на мембране. Н+–АТФаза переносит протоны в полость вакуоли и в цистерны аппарата Гольджи.

Расчет показывает, что для того, чтобы 1 моль соли диффундировал против градиента концентрации, необходимо затратить около 4600 Дж. Вместе с тем при гидролизе АТФ выделяется 30660 Дж/моль. Следовательно, этой энергии АТФ должно хватить для транспорта нескольких моль соли. Имеются данные, показывающие прямо пропорциональную зависимость, существующую между активностью АТФазы и поступлением ионов. Необходимость молекул АТФ для осуществления переноса подтверждается еще и тем, что ингибиторы, нарушающие аккумуляцию энергии дыхания в АТФ (нарушение сопряжения окисления и фосфорилирования), в частности динитрофенол, тормозят поступление ионов.

Насосы делят на две группы:

1) электрогенные, которые осуществляют активный транспорт иона какого-либо одного заряда только в одном направлении. Этот процесс ведет к накоплению заряда одного типа на одной стороне мембраны;

2) электронейтральные, при которых перенос иона в одном направлении сопровождается перемещением иона такого же знака в противоположном либо перенос двух ионов с одинаковыми по величине, но разными по знаку зарядами в одинаковом направлении.

 

Определение адсорбции

Спектр проявлений токсического процесса, определяются строением ксенобиотика. Для обозначения количества вещества, действующего на биологический объект, используют понятие «доза». Зависимость «доза-эффект» может быть прослежена на всех уровнях организации живой материи: от молекулярного до популяционного. При этом в подавляющем большинстве случаев будет регистрироваться общая закономерность: с увеличением дозы - увеличивается степень повреждения системы; в процесс вовлекается все большее число составляющих её элементов. Самым простым объектом, необходимым для регистрации биологического действия ксенобиотика, является клетка.

Многие ксенобиотики действуют непосредственно, адсорбируясь на клеточной поверхности (мембране). Адсорбирующая поверхность в клетке может на несколько порядков превышать объем. Белки и крупные молекулы в растворе находятся в коллоидном состоянии и обеспечивают огромную поверхность для адсорбции. Рассматривая явление адсорбции, следует учитывать:

1)физико-химические характеристики веществ после их адсорбции отличаются от их свойств в растворе;

2)вещество может обратимо адсорбироваться на поверхности клетки;

3)адсорбция определяется суммой всех химических связей, образующихся между молекулами или молекулами и поверхностью;

4)процесс адсорбции обусловлен теми же типами связей (в особенности ван-дер-ваальеовыми, водородными и ионными), что и химические реакции, происходящие во всем объеме вещества;

5)особенности, определяющие количественные различия между реак-циями, протекающими на поверхности и в растворе:

а) на поверхности создается стопроцентная концентрация вещества. Поскольку адсорбируемое вещество обладает ничтожной растворимостью, то при такой его концентрации вероятность химического взаимодействия значительно возрастает;

б) поверхность характеризуется наличием ненасыщенных валентностей, которые в твердом веществе затрачиваются на связывание друг с другом составляющих его атомов;

в)на молекулу, которая адсорбируется из раствора на поверхности, действуют силы, стремящиеся возвратить ее в раствор. Мерой способности вещества возвращаться в среду, т. е. деадсорбироваться, является его растворимость.

Адсорбцию подразделяют на неспецифическую и специфическую.

Неспецифическая адсорбция характерна для веществ амфифильной природы, имеющих концевую гидрофильную группу, связанную с относительно большим гидрофобным остатком. Такие вещества занимают любую доступную им поверхность независимо от химической природы и физических свойств. В сосуде, содержащем мыльный раствор, мыло накапливается на поверхностях раздела воздух - вода и стекло - вода, а так же оно адсорбируется на любых предметах, погруженных в мыльный раствор.

Специфическая адсорбция свойственна гидрофобным веществам, которые стремятся разместиться на поверхности, имеющей химически комплементарный характер

 

 

Примеры антагонизма и синергизма ксенобиотиков.

Синергизм – усиление биологического ответа при совме­тном действии ксенобиотиков по сравнению с эффектами, вы­зываемыми каждым веществом в отдельности.

Антагонизм – ослабление или подавление биологического эффекта при совместном действии по сравнению с влиянием отдельных агентов.

Наибольший интерес с точки зрения развития биологического ответа при взаимодействии ксенобиотиков с мембранами и их влияния на живые системы представляет такое явление, как антагонизм.

Примеры:

Функциональный антагонизм: антагонизм между действием ацетилхолина и норадреналина на гладкую мускулатуру кишечника; физический антагонизм – влияние на кровяное давление вазодиляторов и лекарств, стимулирующих деятельность сердца (в случае рассмотрения сердечно-сосудистой системы как единой эффекторной системы).

1. Аддитивный синергизм (суммация), потенцирующий синергизм, антагонизм иногда объединяют под общим тнрмином «коергизм».

Явление коергизма лежит в основе разработки средств этиотропной (антидоты), патогенетической и симптоматической терапии отравлений. В качестве средств, эффективных при интоксикации тем или иным веществом, могут выступать лишь химические соединения, обладающие антагонистическими отношениями с токсикантом.

2. В медицинской практике достаточно часто используют конкурентный антагонизм при использовании антибиотиков.

3. Металлотионеин имеется во всех животных тканях, связывает большие количества ионов многих металлов, особенно цинка. Он содержит 33 % цистеина и связывает 6 ионов металла на молекулу белка, способствует удалению экзогенных тяжелых металлов из организма. С металлотионеином соединено до 20 % адсорбируемого из ЖКТ и соединенного с низкомолекулярными белками Cd (сначала он соединяется с альбумином, а затем с металлотионеном). Металлотионеин одновременно регулирует вынос из клеток Zn и Сu. В комплексах с металлотионеином и в металлоферментах ионы цинка могут быть заменены марганцем и кобальтом, а также другими ионами без существенного снижения каталитической активности. С цинком в этом плане конкурируют также медь и кадмий.

пример синергизма — использование в комбинации аминазина и какого-либо барбитурата. Каждое лекарственное вещество действует на различные отделы головного мозга, в связи с чем общий эффект оказывается более глубоким.

 

Особенности строения плазматических мембран у различных организмов.

Мембраны растительной клетки. Структура. Толщина биомембран не превышает 6-10 нм. Согласно жидкостно-мозаичной гипотезе строения биологических мембран основу мембраны составляет двойной слой фосфолипидов с некоторым количеством других липидов (галактолипидов, стеринов, жирных кислот и др.), причем липиды повернуты друг к другу своими гидрофобными концами (рисунок 9). Участки молекул полярных липидов, образованные очень часто ненасыщенными жирными кислотами, и стерины обеспечивают несколько разрыхленное (жидкое) состояние бислоя. Полярной частью молекула фосфолипида хорошо взаимодействует с водной средой. Кратная связь в довольно длинный неполярном «хвосте» фосфолипидов находится в цис-конфигурации, поэтому «ножка» не прямая, а как бы изогнутая (рисунок 10 а).

Если образец фосфолипида размешать в водной среде, образуются так называемые мицеллы (рисунок 10 б) построенные так, что полярные головы обращены в водный слой, а неполярные хвосты — внутрь мицеллы.
Способность некоторых липидов к «самосборке» в двойные слои является очень важным свойством, имеющим решающую роль в построении клеточных мембран.

Наружная и внутренняя стороны биологических мембран обращены в качественно разные гидрофильные среды. Это является причиной асимметричного строения мембран — в наружном слое плазмалеммы содержится больше стеринов и гликолипидов.

Липиды, входящие в состав мембранного бислоя, не закреплены жестко, а непрерывно меняются местами. Перемещения липидных молекул бывают двух типов:

в пределах своего монослоя (латеральная диффузия);

путем перестановки двух липидных молекул, противостоящих друг другу в двух монослоях («флип-флоп»).

При латеральной диффузии молекулы липидов претерпевают миллионы перестановок в секунду, а скорость ее составляет 5—10 мкм/с. Перестановки молекул липидов из одного монослоя в другой происходят значительно реже, но могут ускоряться мембранными белками.

В состав мембран входят разные в функциональном отношении белки: белки-ферменты, белки, выполняющие функции насосов, переносчиков, ионных каналов, белки-регуляторы и структурные белки (рисунок 9).

Если такие специализированные протеиновые комплексы:

погружены в липидную фазу и удерживаются гидрофобными связями (липопротеины), их называют «интегральные белки»;

удерживаются на внутренней и внешней поверхностях мембран электростатическими связями (гидрофильные белки), взаимодействуя с гидрофильными головками полярных липидов, то их называют «периферийные белки».

Периферийные белки ассоциированы с мембраной за счет присоединения к интегральным белкам или липидному бислою слабыми связями: водородными, электростатическими, солевыми мостиками. Они в основном растворимы в воде и легко отделяются от мембраны без ее разруше­ния. Некоторые периферийные белки обеспечивают связь между мембранами и цитоскелетом.

Интегральные белки мембран нерастворимы в воде. На положение белков в мембране оказывают влияние состав фосфолипидов (свободных и связанных), величина электростатического заряда мембраны.

В последнее время показано существование третьей группы белков, так на­зываемых «заякоренных» в мембране белков. Эти белки фиксируются в мембране за счет специальной молекулы, в качестве которой могут высту­пать жирная кислота, стерин, изопреноид или фосфатидилинозитол.

Особенностью липидного состава плазмалеммы по сравнению с другими мембранами растительной клетки является высокое содержание стеринов, но в отличие от плазматической мембраны животной клетки для плазмалеммы характерна высокая вариабельность их состава в зависимости от вида расте­ния, органа и ткани.

Функции мембран

1) Структурная функция. У эукариотической клетки в отличие от прокариотической клетки множество внутренних отсеков (компартментов), окруженных мембранами, и различаю­щихся по степени активности содержащихся в них химических сое­динений и систем, регулирующих их превращения. Компартменты эукариотической клетки называются органеллами. Одномембранные структурные компоненты клеток: плазмалемма, эндоплазматический ретикулум, комплекс Гольджи, лизосомы, вакуоль.

Двухмембранные структурные компоненты клеток: ядро, митохондрии, пластиды.

2) Барьерная функция. Для клеток и субклеточных частиц мембраны служат механическим барьером, отделяющим их от внешнего пространства.

3) Контроль поглощения и секреции веществ (транспортная функция). В плазмалемме находятся множество транспорт­ных систем, прежде всего для транспорта ионов, — ионные каналы, ионные переносчики и ионные насосы. Благодаря им осуществляется очень точный и селективный транспорт ионов как внутрь клетки, так и наружу, т.е. оптималь­ное снабжение клетки необходимыми ионами.

4) Аккумуляция и трансформация энергии. Плазмалемма любой клетки является энергизованной мембраной, т. е. на ней существует градиент электрохимиче­ского потенциала ∆μН+, который используется для выполнения полезной ра­боты, прежде всего для активного переноса веществ через мембрану.

5) Размещение и обеспечение работы ферментов. В плазмалемме находится множество ферментов. Это ферменты построения клеточной стенки (целлюлозосинтаза), ферменты сигнальных систем (фосфолипазы С, А; аденилатциклаза)

6) Рецепторная функция. Плазмалемма клетки — это мозаи­ка различных рецепторов эндогенных сигналов (прежде всего фитогормонов) и внешних воздействий. Температура изменяет жесткость (текучесть) мембра­ны, т.е. ее механические свойства. Изменение этих свойств плазмалеммы при­водит к открытию или закрытию находящихся в ней механосенсорных ионных каналов.

7) Сигнальная функция. Многие компоненты плазмалеммы после восприятия сигналов служат источником вторичных мессенджеров — молекул, которые «передают» сигнал по эстафете и усиливают его.

Клеточная стенка обеспечивает механическую прочность клетки, придавая ей жесткую (ригидную) структуру, благодаря чему клетка выдерживает высокое внутреннее осмотическое давление (5--20 МПа). Кроме того, клеточная стенка может обусловливать некоторую степень избирательной проницаемости для низкомолекулярных веществ, а также способность взаимодействовать с другими клетками, вирусами и физическими поверхностями. Строение клеточной стенки у разных организмов имеет свои особенности.

Клетки большинства тканей многоклеточных животных не содержат выраженной клеточной стенки. Растительные клетки, напротив, имеют очень сложную клеточную стенку, построенную из целлюлозных микрофибрилл, погруженных в матрикс (из пектина и гемицеллюлоз).

Клеточные стенки дрожжей и мицелиальных грибов состоят из гомо- и гетерополисахаридов (глюканов, хитина) и белкового комплекса, Толщина этих слоев достигает 1 мкм.

Клеточная стенка громположительных бактерий построена в основном из гетерополисахарида муреина, содержащего аминокислотные «мостики. У грамотрицательных бактерий слой муреина невелик, но в клеточной стенке присутствует наружная мембрана, построенная из фосфолипидов, белков и липопо-лисахарида, обеспечивающая некоторую степень избирательной проницаемости и содержащая рецепторы фагов и антигены. Толщина клеточной стенки составляет от 15 до 80 нм

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.068 с.