Силы, действующие в кривошипно-шатунном механизме. Полярная и развернутая диаграммы нагрузок на шатунную шейку; диаграмма износа. — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Силы, действующие в кривошипно-шатунном механизме. Полярная и развернутая диаграммы нагрузок на шатунную шейку; диаграмма износа.

2017-11-16 268
Силы, действующие в кривошипно-шатунном механизме. Полярная и развернутая диаграммы нагрузок на шатунную шейку; диаграмма износа. 0.00 из 5.00 0 оценок
Заказать работу

 

При воспламенении горючей смеси в цилиндре двигателя расширяющиеся газы равномерно воздействуют на днище поршня, поэтому их можно представить в виде общей силы Р, приложенной к центру поршневого пальца. Когда поршень находится в ВМТ и шатун с кривошипом располагаются на одной линии, то сила Р, действуя вдоль по шатуну и кривошипу, передается на коренные подшипники коленчатого вала, не вызывая его поворота (рис.5, а).

Рис.5. Силы, действующие в кривошипно-шатунном механизме:

а – газы воздействуют на поршень, находящийся в ВМТ; б – аксиальный двигатель; в – дезаксиальный двигатель.

 

При повороте коленчатого вала на некоторый угол шатун отклоняется в сторону от вертикального положения и силу Р можно разложить по правилу параллелограмма на две составляющие: силу Р, направленную вдоль шатуна, и силу N, направленную перпендикулярно к стенке цилиндра (рис.5, б). Перенося силу F по линии ее действия к центру шатунной шейки, вновь раскладывают ее на две составляющие: силу К, касательную к окружности вращения центра шатунной шейки, и силу R, направленную по радиусу кривошипа к центру вала. Сила К, действуя на плечо r, равное радиусу кривошипа, вызывает вращение коленчатого вала с крутящим моментом Мкр = К · r. Этот момент передается через трансмиссию на колеса автомобиля и приводит его в движение.

 

Сила N (нормальная сила), направленная перпендикулярно к стенке цилиндра, прижимает поршень к стенке, увеличивая трение между ними и их износ. Кроме того, сила N, действуя на плечо l, стремится опрокинуть двигатель в сторону, противоположную вращению коленчатого вала, т. е. создает опрокидывающий момент Мопр, равный: Mопр = Nl.

 

Этот момент воспринимается рамой автомобиля через детали подвески. Поэтому между рамой и кронштейнами крепления двигателя устанавливают резиновые подушки, а на некоторых и пружины, смягчающие этот момент.

 

Каким путем уменьшают нормальную силу?

 

Для уменьшения силы N смещают ось коленчатого вала или ось поршня относительно оси цилиндра в сторону действия силы N на величину m (рис.5, в). Такие кривошипно-шатунные механизмы называются дезаксиальными. Величину смещения подбирают на заводе-изготовителе. Кривошипно-шатунные механизмы, у которых оси коленчатого вала и поршня совпадают с осью цилиндра, называются аксиальными.

 

Сила R, направленная к центру вала, создает давление на коренные подшипники, вызывая их износ. При движении поршня от ВМТ к НМТ давление газов постепенно уменьшается и соответственно изменяются величины всех сил, действующих в кривошипно-шатунном механизме.

 

При движении поршня от НМТ к ВМТ направление действия силы N изменяется на противоположное, но величина ее незначительна, так как давление газов на поршень при вспомогательных тактах невелико.

 

Следовательно, в одноцилиндровом четырехтактном двигателе газы воздействуют па поршень периодически через каждые три пол-оборота коленчатого вала. Вследствие этого даже при массивном маховике коленчатый вал вращается неравномерно, вызывая вибрацию всего двигателя. Для устранения этих недостатков на современных автомобилях устанавливают многоцилиндровые двигатели, в которых такты рабочего хода происходят чаще. Например, в четырехтактном четырехцилиндровом двигателе рабочие ходы чередуются через каждые пол-оборота коленчатого вала и следуют один за другим; в шестицилиндровом четырехтактном двигателе они уже перекрываются на 60° поворота коленчатого вала, а в восьмицилиндровом – на 90°. Следовательно, с увеличением количества цилиндров двигателя равномерность вращения коленчатого вала улучшается, крутящий момент стабилизируется, масса маховика, отнесенная к единице мощности, уменьшается.

 

 

 

Подвеска автомобиля. Классификация и применяемость. Анализ конструкций. Требования к амортизаторам. Рабочая диаграмма телескопического амортизатора.

 

Подвеска предназначена для смягчения и гашения колебаний передаваемых от неровностей дороги на кузов автомобиля.

Благодаря подвеске колес кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля.

 

Давайте разберемся с тем, как в принципе колеса автомобиля связаны с его кузовом. Даже если вы никогда не ездили на деревенской телеге, то, глядя на нее через экран телевизора, вы можете догадаться о том, что колеса телеги жестко закреплены к ее «кузову» и все проселочные «колдобины» отзываются на седоках. В том же телевизоре (в сельском «боевике») вы могли заметить, что на большой скорости телега рассыпается и происходит это именно из-за ее «жесткости».

Думаю, в городских условиях, было бы смешно и печально увидеть как «рассыпались» два соседних автомобиля, в то время как вы пытаетесь объехать детали, от уже рассыпавшихся за час до этого других машин. Дабы наш транспорт служил подольше, а «седоки» чувствовали себя получше, колеса автомобилей не жестко связаны с кузовом. К примеру, если поднять автомобиль в воздух, то колеса (задние вместе, а передние по отдельности) отвиснут и будут «болтаться», подвешенные к кузову на всяких там рычагах и пружинах.

 

Вот это и есть подвеска колес автомобиля. Конечно, шарнирно закрепленные рычаги и пружины - «железные» и выполнены с определенным запасом прочности, но эта конструкция позволяет колесам перемещаться относительно кузова. А правильнее сказать - кузов имеет возможность перемещаться относительно колес, которые едут по дороге.

Подвеска может быть зависимой и независимой.

Рис. 40. Схема работы зависимой подвески колес автомобиля

 

 

Зависимая подвеска (рис. 40), это когда оба колеса одной оси автомобиля связаны между собой жесткой балкой (задние колеса). При наезде на неровность дороги одного из колес, второе наклоняется на тот же угол.

Независимая подвеска (рис. 41), это когда колеса одной оси автомобиля не связаны жестко друг с другом (передние колеса). При наезде на неровность дороги, одно из колес может менять свое положение, не изменяя при этом положения второго колеса.

 

Упругий элемент подвески (пружина или рессора) служит для смягчения ударов и колебаний, передаваемых от дороги к кузову.

Рис. 42. Схема амортизатора

1 - верхняя проушина; 2 - защитный кожух; 3 - шток; 4 - цилиндр; 5 - поршень с клапанами сжатия и «отбоя»; 6 - нижняя проушина; 7 - ось колеса; 8 - кузов автомобиля

 

 

Гасящий элемент подвески – амортизатор (рис.42) необходим для гашения колебаний кузова за счет сопротивления, возникающего при перетекании жидкости через калиброванные отверстия из полости «А» в полость «В» и обратно (гидравлический амортизатор). Также могут применяться газовые амортизаторы, в которых сопротивление возникает при сжатии газа.

Рис. 43. Передняя подвеска, на примере автомобиля ВАЗ 2105 (для увеличения изображения кликните по рисунку)

1 - подшипники ступицы переднего колеса; 2 - колпак ступицы; 3 - регулировочная гайка; 4 - шайба; 5 - цапфа поворотного пальца; 6 - ступица колеса; 7 - сальник; 8 - тормозной диск; 9 - поворотный кулак; 10 - верхний рычаг подвески; 11 - корпус подшипника верхней опоры; 12 - буфер хода сжатия; 13 - ось верхнего рычага подвески; 14 - кронштейн крепления штанги стабилизатора; 15 - подушка штанги стабилизатора; 16 - штанга стабилизатора; 17 - ось нижнего рычага; 18 - подушка штанги стабилизатора; 19 - пружина подвески; 20 - обойма крепления штанги амортизатора; 21 - амортизатор; 22 - корпус подшипника нижней опоры; 23 - нижний рычаг подвески

 

 

Стабилизатор поперечной устойчивости автомобиля предназначен для повышения управляемости и уменьшения крена автомобиля на поворотах (рис.43). На повороте кузов автомобиля одним своим боком прижимается к земле, в то время как второй бок хочет уйти «в отрыв» от земли. Вот в отрыв-то, ему и не дает возможности уйти стабилизатор, который, прижавшись к земле одним концом, вторым своим концом прижимает и другую сторону автомобиля. А при наезде какого-либо колеса на препятствие, стержень стабилизатора закручивается и стремится побыстрее вернуть это колесо на свое место.


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.