Классификация головок камер ЖРД — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Классификация головок камер ЖРД

2017-11-18 359
Классификация головок камер ЖРД 0.00 из 5.00 0 оценок
Заказать работу

 

Преимущество плоских головок - в простоте конструкции; кроме того, плоские головки позволяют достаточно хорошо обеспечить однородность поля скоростей и концентраций топлива по поперечному сечению камеры сгорания. Недостатком плоских головок является относительно небольшая прочность и малая жесткость. Поэтому в плоских головках крупногабаритных двигателей необходимо предусматривать подкрепляющие элементы, обеспечивающие тре­буемую прочность и жесткость головки.

Сферические головки часто выполняются с предкамерами и применя­ются в основном в камерах спирто-кислородных двигателей средних и боль­ших тяг. Эта головка удачна и с точки зрения борьбы с явлениями, связанными с поперечными акустическими колебаниями, характерными для двигателей с камерой сгорания большого диаметра. Достоинство этой головки состоит в вы­сокой ее прочности и жесткости, а недостаток—в сравнительно сложной кон­струкции.

Постановка предкамер на головке камеры облегчает экспери­ментальную отработку распыливающего устройства, так как в этом случае воз­можна предварительная доводка только одной предкамеры, что значительно проще и дешевле доводки всей распылительной плоской головки.

 

Шатровые головки, по форме напоминающие шатер, находят примене­ние в двигателях малых и средних тяг, а также в качестве форкамер. Преиму­ществами шатровой головки являются большая, чем у плоской головки, по­верхность для размещения форсунок и хорошие прочностные свойства. Недос­татки головки - в сложности изготовления и неравномерности распределения топлива по сечению. При шатровой головке возможно образование «жгута» распыленного топлива.

 

Вихревые и цилиндрические головки обеспечивают достаточно эффек­тивный распыл компонентов топлива, за счет их лобового соударения. Один из компонентов через подводящий коллектор и отверстия, выполненные в боко­вой стенке, подается во внутреннюю полость головки (в вихревой головке отверстия тангенциальны по отношению к полости смешения, а в цилиндриче­ской - перпендикулярны), а другой - направляется в нее через, как правило, струйные форсунки, установленные в верхней (вихревая) или периферийной (цилиндрическая) зоне головки. На внутреннюю полость вихревой головки камеры нанесено выгорающее покрытие, обеспечивающее охлаждение стенки.

 

Билет №4

1. Потери в соплах РД. Схемы сопел ЖРД.

2. Тяга в двигателе РД при наличии атмосферного давления (1.3).

 

Потери в соплах ракетных двигателей

 

Сопло — необходимый элемент всякого ракетного двигателя, в кото­ром тепловая энергия продуктов сгорания преобразуется в кинетическую энергию истекающей из сопла струи газов. Величина кинетической энергии в конечном итоге определяет главную характеристику двигателя — удельный импульс. Всякий реальный процесс преобразования энергии сопровождается некоторыми потерями. В данном случае потери снижают кинетическую энер­гию струи и, следовательно, удельный импульс.

Одна из задач организации рабочего процесса в соплах ракетных дви­гателей—снижение всякого рода потерь, максимальное приближение реально­го процесса истечения из сопла к идеальному. С другой стороны, сопло ракет­ного двигателя, особенно при современных больших степенях расширения газов в нем, представляет собой довольно громоздкую конструкцию и в общих габаритах и в массе двигателя занимает весьма заметную роль. Другая задача

- всяческое снижение необходимых габаритов сопла ракетного двигателя.

Таким образом, объединяя обе задачи, можно сказать, что при проек­тировании сопла ракетных двигателей основной целью является максимальное приближение процесса истечения к идеальному при минимальных габаритах сопла. Тогда сопло двигателя будет иметь минимальные потери при мини­мальной массе и габаритах.

В соплах реактивных двигателей потери с достаточной точностью можно разделить на следующие виды:

Потери трения. Этот вид потерь связан с трением газа о стенку. Нали­чие вязкого трения при течении газового потока вдоль стенки КС и сопла соз­дает силу, стремящуюся увлечь стенку в направлении потока, т. е. создает си­лу, противоположную тяге.

Газодинамические потери. Этот вид потерь связан с неравномерно­стью поля скорости по величине и направлению на срезе сопла. Дело в том, что, рассматривая характеристики идеального или теоретического двигателя, подразумеваем одномерное течение в сопле и, следовательно, параллельное оси сопла истечение с одинаковой скоростью по всему срезу сопла. В дейст­вительности течение в соплах пространственное, близкое к его разновидности

— осесимметричному потоку, с непараллельным и неравномерным истечени­ем. Это снижает тягу по сравнению с идеальным двигателем.

Термодинамические потери. К термодинамическим процессам, кото­рые могут оказать отрицательное влияние на тяговые свойства сопла, относят недовыделение теплоты в сопле, за счет некоторой степени неравновесности и потери теплоты за счет теплоотдачи в стенку или в систему охлаждения. Эти потери отклоняют реальный процесс от идеализированного, и поскольку в обоих случаях имеют место потери тепловой энергии при расширении, то это вызывает и соответствующие потери тяги в сопле.

Полные потери тяги в соплах. В общем случае суммарный коэффици­ент, отражающий все основные составляющие потери:

где (при «хорошо» спрофилированных и изготовленных соплах):

 

фтр= 0,990—0,975 — коэффициент, отражающий потери тяги из-за трения, зависит главным образом от степени расширения газов в сопле и шероховато­сти внутренней поверхности сопла;

фа = 0,990—0,985 — коэффициент, отражающий газодинамические потери. зависит главным образом от формы и особенностей профиля сопла;

фq = 0.990—0,995 — коэффициент, отражающий потери термодинамического характера, зависит главным образом от степени неадиабатичности процесса, степени расширения газов в сопле и рода топлива.

В итоге, учитывая приведенные выше значения отдельных составляющих, полный коэффициент сопла равен

= 0,975— 0,940, т. ё. потери тяги в соплах составляют от 2,5 до 6,0%, рис.39. Пунктирная кривая расширяет область в сторону его увеличения при применении сопел с полированной внутренней поверхностью.

 

 

 

Рис.39

 

Примерное значение полного коэффициента профилированного сопла в зависимости от степени расширения Рк/ Pa.

 

Схемы сопел ЖРД

Применяемые в ракетных двигателях сопла могут быть разделены на конические, профилированные, кольцевые или сопла с центральным телом.

Конические сопла. Это наиболее простая в техническом отношении схема сопла. Сверхзвуковая часть сопла выполняется в виде прямолинейного расходящегося конуса, а область критического сечения по дуге окружности. Несмотря на большие потери тяги по сравнению с профилированными, эти сопла во многих случаях используются в ракетных двигателях. Больше того, для двигателей, работающих при больших противодавлениях среды (подвод­ных) на режимах с отрывом потока в сопле, конические сопла оказываются более предпочтительными. С достаточной степенью точностью потери тяги на неравномерность поля скорости на срезе сопла или непараллельность истече­ния оцениваются соотношением:

т. е. определяются в основном непараллельностью истечения, 2 - угол ко­нусности сопла. Для безударности входа сопла область критического сечения рекомендуется выполнять по дуге радиуса R = (1— 0,75)d*. Если положить, что кроме потерь на неравномерность потока и трения других нет, то теоретический коэффициент сопла:

будет иметь экстремум при некотором угле конусности. Действительно, при увеличении угла конусности потери непараллельности растут, потери трения уменьшаются, рис.40.

Рис.40

Кривые зависимости от угла конусности 2 для ряда значений степени расширения газов в сопле.

 

По мере увеличения степени расширения газов, т. е. увеличения относитель­ной площади среза величина из-за роста потерь на трение уменьша­ется и её, экстремум сдвигается на большие углы конусности. Из графика следует, что оптимальные углы конусности при рк/ра=100—1000. Этим данным соответствует значение =0,978— 0,972.

 

Профилированные сопла. Профилированные сопла в настоящее время широко распространены. Контур сверхзвуковой части выполняется по специ­альной образующей, которая сначала резко отклоняется от оси сопла, а затем, достигнув максимального угла отклонения в точке перегиба, плавно выравни­вается к концу сопла.

Профилированные сопла обладают определенными преимуществами по сравнению с коническими:

а) при одинаковой длине будут иметь меньшие угол конусности на срезе
и потери на непараллельность;

б) при одинаковой конусности на срезе и соответственно одинаковых по­
терях на непараллельность будут значительно более короткими.

Построение криволинейного контура производится по специальным схемам, основанным на свойствах сверхзвукового потока.

Независимо от схемы построения контура профилированные сопла, так же как и конические, имеют при определенных условиях экстремальное значение коэффициента сопла Действительно, если считать что сопло име­ет только потери на трение и неравномерность потока, то теоретический ко­эффициент = ( будет иметь максимальное значение при опреде­ленной длине сопла). В самом деле, при данной схеме профилирования с уве­личением длины сопла уменьшается угол не параллельности на срезе и, сле­довательно, уменьшаются потери на неравномерность потока. С другой сто­роны, с увеличением длины сопла растут потери на трение. Отсюда произве­дение , так же как и при конических соплах, будет иметь где-то экс­тремум.

Оптимальные ( профилированных сопл лежат при углах конусности на срезе порядка , соответствующие Рк/Ра- =500-1000.

Кольцевые сопла. Одним из перспективных методов уменьшения га­баритов двигателя является использование вместо обычных круглых сопел Лаваля кольцевых или сопел с центральным телом. В этих схемах принцип разгона газового потока до сверхзвуковой скорости остается прежним— геометрическим: дозвуковой поток разгоняется до скорости звука в сужаю­щемся канале, а затем в расширяющемся канале достигает сверхзвуковой ско­рости. Разница между обычным и новым соплом состоит в том, что новая схе­ма сопла имеет форму критического сечения не круглую, а кольцевую или щелевую.

На рис.41 представлена схема сопла с простым кольцевым критиче­ским сечением. Контур этого сопла получается, если вращать контур обычно­го сопла Лаваля с осью х—х вокруг центральной оси 1-1.

Для образования кольцевой или щелевой формы критического сече­ния сопла, как видно из схемы, внутри сопла располагается тело вращения, называемое центральным телом.

 

Для сопла с центральным телом наиболее подходит торовая форма КС. В этом случае центральная часть КС и сопла (внутренняя полость цен­трального тела) оказывается свободной. В ней очень хорошо можно располо­жить турбонасосный агрегат, а также и все остальные агрегаты, обслуживаю­щие двигатель. В результате двигатель с новым соплом получается очень ком­пактным и коротким.

В качестве примера, подтверждающего сказанное, на рис.42,а приве­дены габариты двигателей ракеты «Сатурн-5» Ф-1, имеющего тягу Р = 7000 кН с обычным соплом на рис.42,6 — габариты двигателя ракеты «Сатурн-1В» Н-1 с тягой Р=900 кН, на рис.42,е — габариты двигателя Ф-1 с кольцевым (та­рельчатым) соплом.

Как видно, двигатель с кольцевым соплом оказывается в 100/40 что в 2,5 раза короче и равным по длине двигателю с тягой, почти в 8 раз меньшей. Отсюда соответственно уменьшаются габариты и всей ракеты, что в конечном итоге приводит к заметному выигрышу в массе. Причем в полости централь­ного тела размещаются все агрегаты двигателя вместе с ТНА. Кольцевые со­пла с центральным телом используются для двигателей большой тяги.

Рис.41

Схема простого кольцевого сопла:

Da-диаметр выходного сечения; nкр- высота кольца критического сечения; Rкр- средний радиус кольцевой щели критического сечения

Рис.42


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.