Резонанс в цепи переменного тока. — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Резонанс в цепи переменного тока.

2017-11-16 196
Резонанс в цепи переменного тока. 0.00 из 5.00 0 оценок
Заказать работу

Из формулы для полного сопротивления "Z" контура, в котором последовательно включены R,L, и C, следует, что чем ближе по величине XL и Xc (то есть L и 1c), тем меньше полное сопротивление "Z" и, следовательно, тем больше ток в цепи при том же приложенном напряжении "U".

При XL = Xc или L = 1c полное сопротивление Z = R и ток достигает наибольшего значения, обусловленного только активным сопротивлением цепи:

.

Это явление называют электрическим резонансом. Условие резонанса может быть обеспечено путем подбора соответствующих L и C при заданной частоте  или, наоборот, при заданных L и C путем соответствующей частоты "", которая называется резонансной (или собственной частото

БИЛЕТ 13)

1)Применение производной для исследования функций, необходимое и достаточное условие существования экстремума.

 

Связь между непрерывностью и дифференцируемостью функции. Если функция f (x) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.

С л е д с т в и е. Если функция разрывна в некоторой точке, то она не имеет производной в этой точке.

Достаточные признаки монотонности функции.

Если f ’(x) > 0 в каждой точке интервала (a, b), то функция f (x) возрастает на этом интервале.

Если f ’(x) < 0 в каждой точке интервала (a, b), то функция f (x) убывает на этом интервале.

 

 

Критические точки. Внутренние точки области определения функции, в которых производная равна нулю или не существует, называются критическими точками этой функции. Эти точки очень важны при анализе функции и построении её графика, потому что только в этих точках функция может иметь экстремум (минимум или максимум)

Необходимое условие экстремума. Если x 0 - точка экстремума функции f (x) и производная f’ существует в этой точке, то производная в этой точке равна нулю.

 

Достаточные условия экстремума.

Если производная при переходе через точку x 0 меняет свой знак с плюса на минус, то x 0 - точка максимума.

Если производная при переходе через точку x 0 меняет свой знак с минуса на плюс, то x 0 - точка минимума.

 

 

БИЛЕТ 14

2Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает. Явление дифракции объясняется с помощью принципа Гюйгенса (см. § 170), согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Дифракционная картина – система чередующихся светлых и темных колец.

3. Теплово́е излуче́ние или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.

Примером теплового излучения является свет от лампы накаливания.

Характеристики:

Энергетическая светимость тела - — физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.

Спектральная плотность энергетической светимости — функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн).

Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение.

Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

Зако́н смеще́ния Ви́на даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.

λmax = b/T ≈ 0,002898 м•К × T −1 (K),

где T — температура, а λmax — длина волны с максимальной интенсивностью. Коэффициент b, называемый постоянной Вина, в системе СИ имеет значение 0,002898 м•К.

Для частоты света (в герцах) закон смещения Вина имеет вид:

 

 

где

α ≈ 2,821439… Гц/К — постоянная величина,

k — постоянная Больцмана,

h — постоянная Планка,

T — температура (в кельвинах).

Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры.

Закон Кирхгофа Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

 

 

БИЛЕТ 15

2) Геометрическая (лучевая) оптика представляет собой простой приближенный метод построения изображений в оптических сис­темах. Из каждой точки S светящегося предмета проводят пучок лучей и отыскивают точку их пересечения S' после прохождения оптической системы. Из этой точки лучи расходятся дальше, как будто бы точка являлась самостоятельным источником света. Поэтому она называется изображением светящейся точки S. Со­вокупность изображений всех точек светящегося объекта пред­ставляет собой изображение этого объекта, полученное с помощью данной оптической системы.

При построении изображений в геометрической оптике исходят из следующих приближений:

1.Свет в однородной "среде распространяется прямолинейно (т. е. явлениями дифракции пренебрегают).

2.Отдельные лучи распространяются независимо друг от дру­га (т. е. интерференцией лучей пренебрегают).

3.При переходе луча из среды с показателем преломления п в среду с показателем преломления п' на границе раздела выпол­няется соотношение

ti sin i = п' sin т (7.1)

между углом падения i и углом преломления г. Отражение рассмат­ривается как частный случай преломления обратно в первую среду и ход лучей определяется простой подстановкой в полученные из вакона преломления (7.1) соотношения п - п. Частичное отра­жение лучей при преломлении и частичное поглощение их при от­ражении не учитываются.

Оптическая система представляет собой совокупность отражающих - и преломляющих поверхностей, отделяю­щих друг от друга оптически однородные среды. Обычно эти поверхности бывают сферическими или плоскими (плоскость можно рассматривать как сферу бесконечно­го радиуса). Реже применяются более сложные, но имеющие ось симметрии поверхности (эллипсоид, гиперболоид, параболоид вращения и др.).

Оптическая система, образованная сферическими (в частности плоскими) поверхностями, называется центрированной, если центры всех поверхностей лежат на одной прямой. Эту прямую называют оптической осью системы.

ВОЛОКОННАЯ ОПТИКА-раздел оптики, в к-ром рассматривается передача света и изображения по световодам и волноводам оптич. диапазона, в частности по многожильным световодам и пучкам гибких волокон. В. о. возникла в 50-х гг. 20 в.

В волоконно-оптич. деталях световые сигналы передаются с одной поверхности (торца световода) на другую (выходную) как совокупность. Поэлементная передача изображения волоконной деталью: 1 - изображение, поданное на входной торец; 2 - светопроводящая жила; 3 - изолирующая прослойка; 4 - мозаичное изображение, переданное на выходной торец. элементов изображения, каждый из к-рых передаётся по своей световедущей жиле (рис.). В волоконных деталях обычно применяют стеклянное волокно, световедущая жила к-рого (сердцевина) окружена стеклом-оболочкой из др. стекла с меньшим показателем преломления. Вследствие этого на поверхности раздела сердцевины и оболочки лучи, падающие под соответствующими углами, претерпевают полное внутр. отражение и распространяются по световедущей жиле. Несмотря на множество таких отражений, потери в световодах обусловлены гл. обр. поглощением света в массе стекла жилы. При изготовлении световодов из особо чистых материалов удаётся снизить ослабление светового сигнала до неск. десятков и даже единиц дБ/км. Диаметр световедущих жил в деталях разл. назначений лежит в области от нескольких мкм до нескольких мм. Распространение света по световодам, диаметр к-рых велик по сравнению с длиной волны, происходит по законам геометрической оптики; по более тонким волокнам (порядка длины волны) распространяются лишь отд. типы волн или их совокупности, что рассматривается в рамках волновой оптики.

Для передачи изображения в В. о. применяются жёсткие многожильные световоды и жгуты с регулярной укладкой волокон. Кач-во передачи изображения определяется диаметром световедущих жил, их общим числом и совершенством изготовления. Любые дефекты световодов портят изображение. Обычно разрешающая способность волоконных жгутов составляет 10-50 лин./мм, а в жёстких многожильных световодах и спечённых из них деталей - до 100 лин./мм.

Изображение на входной торец жгута проецируется с помощью объектива. Выходной торец рассматривается через окуляр. Для увеличения или уменьшения действит. изображения применяются фоконы - пучки волокон с плавно увеличивающимся или уменьшающимся диаметром.

Медицинский эндоскоп представляет собой прибор, который предназначен для визуальной диагностики и обследования внутренних органов человека. Прибор выполнен в виде трубки, которая снабжена оптической системой и осветительным аппаратом.В зависимости от используемой системы передачи изображения, медицинские эндоскопы подразделяют на эндоскопическое оборудование с линзовой оптикой – в таком случае наблюдательная оптическая система эндоскопа которых построена с использованием линз, эндоскопы с оптикой волоконного типа, представляющие собой гибкие эндоскопы, в оптической наблюдательной схеме которых, для передачи изображения, применены гибкие волоконные световоды.

Эндоскопы с линзовой оптикой необходимо отличать от приборов с волоконным световодом, в которых исследуемый объект освещается при помощи светового потока, передаваемого по волоконному световоду от непосредственного источника света, расположенного вне наблюдаемой области. И последний тип эндоскопического оборудования — это тубусные эндоскопы, самые простейшие эндоскопы, которые представляют собой небольшую полую трубку, снабженную лупой.

БИЛЕТ16

1 )Интеграл - это математический объект, который возник исторически на основе потребности решения различных прикладных задач физики и техники. Это геометрические и физические приложения определенного интеграла.

Связь между определенным и неопределенным интегралом.определенный интеграл - это число, а физически - числовая интегральная характеристика некоторой области пространства, плоскости или интервала числовой оси. Здесь мы рассмотрим именно интервал числовой оси, поскольку связь между обоими типами интеграла можно установить только для интеграла от функции одной переменной.Итак, для каждого интервала числовой оси, для которого определена и непрерывна числовая функция, можно вычислить определенный интеграл, то есть число соответствующее данному интервалу и функции. Оставим левый конец интервала интегрирования фиксированным, а правый конец сделаем переменным.Тогда мы получим определенный интеграл с переменным верхним пределом интегрирования, который уже не будет числом, а будет функцией этого верхнего предела интегрирования. Доказано, что производная интеграла с переменным верхним пределом в точке равна значению подынтегральной функции в этой точке. Это означает, что интеграл с переменным верхним пределом есть первообразная подынтегральной функции. Определенный интеграл с фиксированным верхним пределом равен значению первообразной подынтегральной функции в точке, равной этому верхнему пределу.Отсюда легко вытекает, что определенный интеграл есть разность значений первообразных на концах отрезка интегрирования(теорема Ньютона-Лейбница).

13) Теорема о сложении вероятностей. Вероятность появления одного из двух несовместныхсобытий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события образуют полную группу несовместных событий, то имеет место равенство

.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и Ввычисляется по формуле:

Вероятность появления хотя бы одного из событий, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

Если события имеют одинаковую вероятность, то формула принимает простой вид:

 

3) Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации).

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9 %. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.

Первичные продукты радиолиза воды - радикалы Н, ОН-, ГИДР - располагаются в пространстве достаточно близко друг от друга, образуя своеобразные скопления - «рои» небольшого объема, средний радиус которых около 1,5 нм. Радиохимики называют эти скопления шпурами. В среднем на шпур приходится около 6 радикалов. Именно в шпуре происходит рекомбинация радикалов с образованием молекулярных продуктов - Н2 и Н202 - например, по реакциям (IV-6) - (IV-8).

Атаковать растворенные молекулы могут лишь те радикалы, которые не рекомбинируют, а выходят из шпура. Эти радикалы, а также молекулярные продукты радиолиза мы будем называть продуктами радиолиза воды, образование их отражает.

Механизм образования радикалов при радиолизе алкилфторидов отличается от механизма образования радикалов у других алкилгалогенидов.

Исследование радикальных пар представляет значительный интерес для химической кинетики в конденсированной фазе и может дать ценную информацию о механизме образования радикалов.

 

БИЛЕТ 17

 

1) Условной вероятностью (два обозначения) называют вероятность события В, вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

.

В частности, отсюда получаем

Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило:

3. Дозиметрия ионизирующих излучений - раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. — совокупность методов измерения этих величин. Важнейший признак дозиметрических величин — их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений (Ионизирующие излучения). Основной дозиметрической величиной является Доза ионизирующего излучения и ее модификации. Задача Д. и. и. — описание дозного поля, сформированного в живом организме в реальных условиях облучения.

Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения и среды — это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза — это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.

В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Поглощенная доза

При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза. Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.

За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр — это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.).

 

БИЛЕТ 18

2 Интерференция света, сложение световых волн, при котором обычно наблюдается характерное пространственное распределение интенсивности света (интерференционная картина) в виде чередующихся светлых и тёмных полос вследствие нарушения принципа сложения интенсивностей (см. Интерференция волн). Некоторые явления И. с. наблюдались ещё И. Ньютоном, но не могли быть объяснены с точки зрения его корпускулярной теории (см. Свет, Оптика). Правильное объяснение И. с. как типично волнового явления было дано в начале 19 в. Т. Юнгом и О. Френелем. И. с. возникает только в случае, если разность фаз постоянна во времени, т. е. волны когерентны.

смерть; 5) возникновение катаракт.

3). РАДИОАКТИВНОСТЬ

самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения.

Закон радиоактивного распада

Каждый радиоактивный элемент можно охарактеризовать промежутком времени Т, в течение которого распадается половина ядер, имевшихся в момент начала отсчета времени. Период полураспада- основная константа радиоактивного элемента. Период полураспада характеризует скорость распада.

Акти́вность радиоакти́вного исто́чника — ожидаемое число элементарных радиоактивных распадов в единицу времени.

ЭЛЕКТРО́ННЫЙ ЗАХВА́Т, радиоактивный распад атомных ядер (бета-распад), при котором ядро захватывает электрон с одной из внутренних оболочек атома (K, L, M и т. д.), чаще всего с ближайшей к ядру К-оболочки (К-захват (см. К-ЗАХВАТ)), и одновременно испускает нейтрино (см. НЕЙТРИНО). При этом ядро с атомным номером Z превращается в ядро с Z" = Z-1, но с тем же массовым числом.

Позитро́нный распа́д — тип бета-распада, также иногда называемый «бета-плюс-распад» (β+-распад), «эмиссия позитронов» или «позитронная эмиссия». В β+-распаде один из протонов ядра превращается посредством слабого взаимодействия в нейтрон, позитрон и электронное нейтрино.

 

 

Билет 19)

 

 

2))

иНФРАЗВУК.ИСТОЧНИКИ И ПРИЕМНИКИ ИНФРАЗВУКА

Инфразву́к (от лат. infra — ниже, под) — упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем.

Естеств. источниками И. являются метеорологич., сейсмич. и вулканич. явления. И. генерируется атм. и океанич. турбулентными флуктуациями давления, ветром, морскими волнами (в т. ч. приливными), водопадами, землетрясениями, обвалами, извержением вулканов. В океане вклад в шумовое инфразвуковое поле вносят изгибные колебания и температурное растрескивание ледового покрова, в атмосфере - грозовые разряды, полярные сияния. Источниками И., связанными с человеческой деятельностью, являются взрывы, орудийные выстрелы, ударные волны от сверхзвуковых самолётов, удары копров, акустич. излучение реактивных двигателей и др. И. содержится в шуме двигателей и технол. оборудования (дизелей, компрессоров и др.), в шуме винтов кораблей, обтекания ветром крупных сооружений. Всякий очень громкий звук несёт с собой, как правило, и инфразвуковую энергию. Характерно, что излучением И. сопровождается процесс речеобразования. Вибрации зданий, создаваемые производств, и бытовыми возбудителями, как цравило, содержат инфразвуковые компоненты. Существ, вклад в инфразвуковое загрязнение среды дают транспортные шумы как аэродинамич., так и вибрац. происхождения. Установлено, что И. с высоким уровнем интенсивности (120 дб и более) оказывает вредное влияние на человеческий организм. Ещё более вредными являются инфразвуковые вибрации, поскольку при их воздействии могут возникать опасные резонансные явления отд. органов. Мощный И. может вызывать разрушение и повреждение конструкций, оборудования. Вместе с тем И. вследствие большой дальности распространения находит полезное практическое применение при исследовании океанической среды, верхних слоев атмосферы, для определения места извержения или взрыва, при решении разнообразных задач связи и обнаружения. Инфразвуковые волны, излучаемые при подводных извержениях, позволяют предсказать возникновение цунами. При исследованиях И. в качестве его источника чаще всего используют взрывы, поскольку излучатели звука обычного типа на инфразвуковых частотах громоздки и малоэффективны, обладают большой реактивной мощностью. Для приёма И. применяют микрофоны, гидрофоны и геофоны, конструкция к-рых и усилит, электронная схема модифицированы применительно к относительно большим амплитудам колебаний принимаемых сигналов, низким частотам и большим выходным сопротивлениям приёмного элемента.

 

БИЛЕТ 20

2) Разрешающая способность (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Обратная ему величина обычно служит количественной мерой Р. с. Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе (т. е. безаберрационной; см. Аберрации оптических систем) изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете, радужно окрашенными — в белом свете).

 

 

БИЛЕТ 21

1 закон распределения (кроме этого названия, в литературе встречаются и такие названия: «кривая ошибок», «вероятностная кривая», «кривая Гаусса», «кривая Лапласа», «колоколообразная кривая») так же широко применим, как и экспоненциальный закон. Нормальное распределение возникает тогда, когда на исследуемую величину действует сумма многих случайных факторов, каждый из которых вносит незначительный вклад в суммарное значение отклонения величины от ее среднего значения. Размах распределения зависит от вызвавшей его системы факторов. Этому закону подчиняется большинство непрерывных случайных величин, зависящих от большого числа факторов: например, изнашивание многих деталей под действием сил трения, отклонения в размерах деталей, ошибки измерений, наработка на отказ, рассеивание снарядов, размеры пузырьков газа при флотации и т. П

 

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.058 с.