Энергоемкость основных сырьевых материалов металлургического производства и энергоносителей — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Энергоемкость основных сырьевых материалов металлургического производства и энергоносителей

2017-11-17 892
Энергоемкость основных сырьевых материалов металлургического производства и энергоносителей 0.00 из 5.00 0 оценок
Заказать работу

В последние годы в нашей стране и за рубежом благодаря возросшему вниманию специалистов к вопросам энергетики металлургического производства, частично вскрыты и использованы резервы снижения энергоемкости чугуна, стали, проката. Большая же часть имеющихся резервов нуждается в поиске новых эффективных путей их реализации.

К настоящему времени в качестве энергоемкости какого-либо продукта производства, в том числе и стали, принимают затраты первичной энергии в виде потенциальной тепловой энергии в данном производстве и на всех предшествующих этапах получения материалов, использованных на плавку, включая энергоносители (топливо, электроэнергию, тепловую энергию) [2]. Иными словами энергоемкость стали представляет собой сумму энергоемкостей, затраченных на ее получение материалов и энергоносителей. Для отдельного материала в его энергоемкости учитываются затраты энергии на добычу сырья, его транспортировку, подготовку к производству (с учетом всех компонентов шихты). Энергоемкость топлива прежде всего включает его теплотворную способность, а также затраты первичной энергии на добычу, переработку и транспортировку. Определяя энергоемкость участвующих в производстве материалов, вычитают потенциальную тепловую энергию побочных продуктов производства, обладающих теплотворной способностью или значительным теплосодержанием и поддающихся утилизации для дальнейшего полезного применения в качестве тепло- или энергоносителей (например, при получении кокса — газа, смолы, бензола; при производстве чугуна — доменного газа и т.д.).

Ниже, приведена таблица энергоемкостей основных сырьевых материалов металлургического, в том числе сталеплавильного производства; стали, полученной по различным технологическим схемам [5]. Следует заметить, что для определения как энергоемкости сырьевых материалов, так и непосредственно стали, достаточно учитывать затраты только наиболее энергоемких материалов и энергоносителей.

В таблице 10 приведены данные энергоемкости основных шихтовых материалов, топлива и огнеупоров, технологических газов, использующихся в сталеплавильном производстве.

Таблица 10 – Удельная энергоемкость основных материалов сталеплавильного производства

Материалы Энергоемкость     Материалы Энергоемкость    
Агломерат, МДж/кг Кокс, МДж/кг Уголь, антроцит, МДж/кг Природный газ, МДж/м3 Мазут, МДж/ кг Чугун, МДж/кг Металлолом, МДж/ кг Металлезированные окатыши, МДж/кг Ферросплавы, МДж/кг: ФМН75 ФС45     2,2 40,4 31,0 37,6 41,0 23,8 0,2   17,0   55,02 Известь, МДж/кг Огнеупоры, МДж/ кг Электроды графи- тированные, МДж/кг Кислород, МДж/ м3 Азот, МДж/м3 Аргон, МДж/м3 Компрессорный воздух, МДж/ м3 Электроэнергия МДж/кВт • ч 5,4 16,5   186,0 5,8 2,5 35,6   1,15   11,25  
   
   
   
   
   
   
     
     
     
     
70,34      

 

Как видно из таблицы 10, максимальный уровень энергозатрат характерен для процессов с высокой долей чугуна в шихте. Поэтому важнейшими резервами снижения энергоемкости является экономия топлива и энергии при получении чугуна и снижение его расхода в производстве стали. Снижение расхода чугуна необходимо добиваться совершенствованием тепловой работы современных сталеплавильных агрегатов и создание новых высокоэффективных энергосберегающих технологий выплавки стали, за счет увеличения доли металлического лома в шихте до 30 – 50%. При таком содержании металлического лома в шихте, энергоемкость металла, полученного в кислородном конвертере, существенно снижается, что в целом определяет перспективность указанных процессов с позиции энергетики переработки в стали с указанной долей металлического лома в металлошихте в таблице 29 и рисунке 31 (Приложение А) приведены энергомкости выплавки стали при различной доле лома в шихте [2].

Все комбинированные процессы, позволяющие увеличить долю лома в металозавалке, приводят к снижению удельных энергозатрат на выплавку стали. Прежде всего это связано с различной энергоемкостью чугуна и стали. При определении энергозатрат в килограмма условного топлива, энергоемкость одной тонны лома составляет 252 кг у.т., в то же время энергоемкость одной тонны чугуна составляет более 811 кг у.т. Поэтому соответствующая замена в металлозавалке одной тонны чугуна на одну тонну металлического лома, позволяет сэкономить не менее 559 кг.у.т.

Высокая энергоемкость чугуна приводит к тому, что при получении стали только из из чугуна, общие энергозатраты в 3—4 раза больше, чем при выплавке ее из стального. Снижения расхода чугуна необходимо добиваться совершенствованием тепловой работы современных сталеплавильных агрегатов и созданием новых высокоэффективных энергосберегающих, высокопроизводительных технологий выплавки стали,

Таким образом, повышение доли металлолома в шихте сталеплавильных агрегатов, всемерное увеличение степени использования образующихся ресурсов лома черных металлов резко снижают расходы первичной энергии в отрасли и энергоемкость стали. При современной структуре металлошихты в стране и ожидаемом в будущем повышении доли лома в ней до 50 % наиболее энергетически выгодна структура сталеплавильного производства, с максимальной степенью участия кислородно-топливного процесса с расходом лома 40—50 %.

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.