Полупроводниками и металлами — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Полупроводниками и металлами

2017-10-16 222
Полупроводниками и металлами 0.00 из 5.00 0 оценок
Заказать работу

Описанные выше феноменологические (т.е., экспериментально наблюдаемые - от слова “phenomenon” – феномен, явление, объект чувственного восприятия) отличия кристаллических полупроводников от кристаллических металлов являются следствием гораздо более глубокого фундаментального физического отличия между такими материалами, а именно – отличия в их электронной энергетической структуре (ЭЭС) или проще – в их энергетическом спектре (ЭС), которое обусловлено квантово-механической природой особенностей взаимодействия между очень близко расположенными (r < 1 нм) атомами, образующими кристаллическую решетку твердого тела.

Соответствующие квантово-механические представления и связанный с ними математический аппарат выходят за рамки физики средней школы. Поэтому указанные отличия далее будут рассмотрены на самом элементарном уровне и в тесной связи с известными из школьного курса физики представлениями о энергетическом спектре атома, показанного, например, согласно теории Бора для атома водорода на рисунке 6.

 

Рисунок 6 – Энергетический спектр атома водорода согласно полуклассической теории Бора

 

Как следует из школьного курса физики, соответствующая теория Бора (развитая в 1913 году и получившая Нобелевскую премию в 1922 году) допускает представление атома в виде центрального положительно заряженного ядра и имеющего отрицательный заряд электрона, движущегося вокруг ядра по строго определенной стационарной орбите с n = 1 в основном не возбужденном состоянии атома или по одной из многих строго определенных стационарных орбит с n = 2, 3, 4, …. в случае, когда не ионизированный атом находится в одном из возбужденных состояний за счет, например, поглощения кванта электромагнитного излучения (фотона) с энергией

 

E n = , (14)

 

где h = 6,63·10-34 Дж·с – постоянная Планка; ν – частота электромагнитного излучения.

 

Согласно теории Бора, каждая стационарная орбита электрона с номером n характеризуется соответствующим ее номеру квантовым числом n = 1, 2, 3, …, а также соответствующей этому числу квантованной энергией

(15)

 

где me = 9,1·10-31 кг – масса электрона; e = 1,6·10-19 Кл – абсолютное значение заряда электрона; ε0 = 8,85·10-12 Ф/м – электрическая постоянная; ħ = h /2 π – перечеркнутая постоянная Планка.

 

Согласно второму постулату Бора, переход электрона с одной стационарной орбиты на другую сопровождается испусканием (или поглощением) атомом кванта электромагнитной энергии

(16)

 

где i и k – квантовые числа для соответствующих стационарных орбит.

 

Потенциальная энергия электрона U (rn) в атоме водорода

 

U (rn) = - e 2/(4πε0 rn), (17)

 

где rn - расстояние электрона от ядра.

 

Таким образом, ЭЭС (или ЭС) атома водорода (Рис. 6) включает представление потенциальной энергии электрона в атоме как функции координат (формула (17)) и систему энергетических уровней стационарных квантовых состояний атома (формула 15)).

Из Рис. 6 видно, что чем меньше r (чем ближе электрон к ядру), тем больше по абсолютной величине потенциальная энергия U (rn). Точке А на Рис. 6 соответствует первая стационарная боровская орбита с главным квантовым числом n = 1 и энергией Радиус этой орбиты rБ =

Вместе с тем, согласно квантовой механике, никаких орбит нет. Электрон движется вблизи ядра, «посещая» с разной вероятностью все точки пространства. В точке с координатой r = rБ = r 1 вероятность нахождения электрона в не возбужденном атоме водорода (при n = 1) максимальна.

6.

 

Теперь вернемся к вопросу о энергетическом спектре кристалла, состоящего из огромного количества упорядоченно близко расположенных и квантово-механически взаимодействующих между собой атомов.

(Рис. 7).

Рисунок 7 – Одномерная энер-гетическая модель кристалла: а – межатомное расстояние; L – общий размер кристалла; А – потенциальный барьер, ограни-чивающий переход электронов от одного из атомов к соседне-му; В – потенциальная яма одного из соседних атомов    
На Рис. 7 схематически представлена одномерная энергетическая модель кристалла.

Обоснование этой модели состоит в следующем (ниже изложенное обоснование содержит ссылки на Рис. 4.7, который соответствует приведенному выше Рис. 7,, а также ссылки на Рис. 4.8, который соответствует приведенному ниже Рис. 8).

Рисунок 8 – Схематическое изображение энергетических спектров (ЭС): а – отдельного изолированного атома натрия; б – системы из N атомов натрия в зависимости от расстояния r между ними; в – двух энергетических зон кристалла натрия, образовавшихся из 3 s - и 3 р -состояний атома натрия; ЗП – зона проводимости кристалла натрия; ВЗ – валентная зона кристалла натрия

 

 

Рисунку 8 соответствует часто акцентируемое в литературе по физике полупроводников несколько видоизмененное, но, в принципе, тождественное и показанное на рисунке 9 изображение эволюции ЭС системы одинаковых атомов при их сближении до r = а. Для системы атомов кремния (Si) эволюция ее ЭС при сближении этих атомов до r = а показана на рисунке 10, где R и R 0 тождественно равны r и а, соответственно.

Кроме того, описанные выше критерии деления кристаллических материалов на металлы, полупроводники и диэлектрики очень наглядно иллюстрируют схематические изображения электронных энергетических структур соответствующих материалов, приведенные на рисунке 11.

       
 
Рисунок 9 – Схематическое изображение эволюции ЭС системы одинаковых атомов при их сближении до r = а, где r 1 соответствует а 1 для металлического кристалла, в то время, как r 2 соответствует а 2 для полупроводникового кристалла (r 2 > r 1 => а 2 > а 1, что типично для полу-проводников и металлов  
 
Рисунок 10 - Схематическое изобра-жение эволюции ЭС системы атомов кремния при их сближении до R 0r 2 = а 2 = 0,54 нм, соответствующем образо-ванию монокристалла полупроводнико-вого кремния с шириной запрещенной зоны E g = 1,12 эВ при 300 К (согласно Рис. 8 для монокристалла металличес-кого натрия а 1 = 0,43 нм и E g = 0)  

 


Рисунок 11 – Схематические изображения электронной энергетической структуры (ЭЭС), характерной для металлов, полупроводников и диэлектриков (как видно из этих изображений, ЭЭС полупроводников и диэлектриков не имеют принципиальных отличий, в связи с чем эти материалы условно различаются по ширине запрещенной зоны – к полупроводникам относятся материалы с полностью заполненной электронами валентной зоной и с 0 < E g £ 3 эВ, а к диэлектрикам - материалы с полностью заполненной электронами валентной зоной и с E g > 3 эВ)

 

До следующего занятия самостоятельно ознакомиться!!! с содержанием подразделов 4.9 ‑ 4.16 (страницы 83-97) книги, djvu-файл которой “lozovskii_v_n_...” выдан в наборе электронных документов по соответствующей тематике.

 

 

Описанная выше специфика электронной энергетической структуры монокристаллических полупроводниковых материалов обусловливает возможность изготовления из них огромного многообразия структур, лежащих в основе современных уникальных полупроводниковых приборов и устройств, обеспечивающих развитие научно-технического прогресса (см. книгу, djvu-файл которой “Полупроводниковые приборы – Пасынков В.В.” выдан в наборе электронных документов по соответствующей тематике). В связи с указанным необходимым элементом введения в специальность «Микро- и наносистемная техника» является ознакомление в общих чертах с основными типами современных полупроводниковых приборных структур.

 


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.06 с.