Титановые, медные и алюминиевые сплавы — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Титановые, медные и алюминиевые сплавы

2017-10-16 2392
Титановые, медные и алюминиевые сплавы 4.67 из 5.00 6 оценок
Заказать работу

Титан и его сплавы

 

Важнейшее преимущество титана и титановых сплавов перед другими конструкционными материалами – это высокая удельная прочность и жаропрочность в сочетании с хорошей коррозионной стойкостью, практическое отсутствие хладноломкости наряду с высокой удельной прочностью. Кроме того, титан и его сплавы, несмотря на плохую обрабатываемость резанием, хорошо свариваются, обрабатываются давлением в холодном и горячем состоянии, термически упрочняются, что имеет важное значение для их применения в ряде отраслей техники. Это относится в первую очередь к авиа-, ракето- и судостроению, химическому, пищевому и транспортному машиностроению.

Титан – металл серебристо-белого цвета с плотностью ρ = 4,505 г/см3 и температурой плавления 1672 °С. Титан может находиться в двух полиморфических модификациях: Tiα до 882 ºС с гексагональной плотноупакованной решеткой и высокотемпературной Tiβ выше этой температуры с объёмноцентрированной кубической решеткой до температуры плавления. Имеет высокие механические свойства σВ = 300МПа, δ = 40%, не имеет температурного порога хладноломкости, парамагнитен. Титан легкий, прочный, тугоплавкий, коррозионно-стойкий за счет возникновения оксидной пленки TiO2.

Механические свойства титана определяются составом: чем в нем меньше примесей, тем ниже прочность и выше пластичность (рис. 6.1). Характерная особенность титана – необычайно высокая чувствительность к примесям атмосферных газов – кислороду, азоту, водороду и углероду, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, нитриды, гидриды, карбиды, повышая его характеристики прочности и снижая пластичность.

Рис. 6.1. Влияние примеси кислорода на механические свойства титана

 

Кроме того, ухудшается обработка давлением, свариваемость и коррозионная стойкость. Поэтому содержание этих примесей ограничивается сотыми и тысячными долями процента.

Полиморфизм титана, хорошая сплавляемость с другими металлами дает широкие возможности получения сплавов на основе титана с самыми разными механическими свойствами благодаря легированию, термической обработке, деформационному упрочнению.

Элементы, легирующие титан, подразделяются на:

· повышающие температуру полиморфного превращения и расширяющие область существования α-модификации: Al, Ga, La, C, O, N;

· понижающие температуру полиморфного превращения и расширяющие область существования β-модификации: Mo, V, Nb, Ta, Hf, W, Cr, Mn, Fe, Co и другие.

Алюминий является основным легирующим элементом для титана и содержится почти во всех промышленных сплавах. Образуя с титаном твердый раствор, он повышает удельную прочность сплава, жаропрочность, модуль упругости, уменьшает склонность к водородной хрупкости. Из-за уменьшения технологической пластичности содержание Al ограничивается 7%.

Для повышения рабочих характеристик жаропрочных сплавов с высоким содержанием алюминия главным образом используют добавки ванадия, молибдена и вольфрама.

Цирконий повышает термическую стабильность, увеличивает предел ползучести, прочность при низких и средних температурах, уменьшает склонность к хладноломкости и улучшает свариваемость.

Хром считается одной из наиболее перспективных легирующих добавок к титану наряду с молибденом. Сплавы титана с хромом отличаются превосходным сочетанием прочности и пластичности (рис. 6.2).

Ниобий – повышает стабильность поверхности, увеличивает жаростойкость при высоких температурах.

 

Рис. 6.2. Твердость сплавов титана с различным содержанием хрома после отжига
при температуре 600 ºС (1) и охлаждения из β-области с различными скоростями:
резкая закалка в растворе щелочи (2), закалка в воде (3), охлаждение на воздухе (4)

 

В связи с определенным характером действия на титан различных легирующих элементов промышленные сплавы по типу структуры могут быть подразделены на три группы: титановые сплавы на основе
Tiα, сплавы на основе Tiβ и двухфазные (α+β)- титановые сплавы.

Промышленные титановые сплавы с (α+β)- структурой целесообразно подразделить на три группы: псевдо-α-сплавы с небольшим количеством β -фазы (Tiβ) со свойствами, близкими к α-сплавам (Tiα), типичные (α+β)- сплавы и псевдо- β -сплавы. Псевдо- β -сплавы представляют собой сплавы на основе Tiβ. В отожженном состоянии их физико-механические и технологические свойства типичны для β -сплавов, однако β -фаза у этих сплавов термически нестабильна.

По уровню характеристик прочности титановые сплавы классифицируют на высокопластичные и малопрочные, среднепрочные и высокопрочные, жаропрочные, коррозионно-стойкие.

По способности упрочняться с помощью термической обработки – на упрочняемые и не упрочняемые. По технологии производства – на деформируемые и литейные.

Деформируемые титановые сплавы с α -структурой, содержащие в основном алюминий, характеризуются невысокой прочностью и не упрочняются при термической обработке. Они хорошо свариваются и имеют высокие механические свойства при криогенных температурах, устойчивы против коррозии в атмосферной среде, загрязненной газами до температуры 1090 °С; сохраняют высокую прочность при нагреве до 650 °С (ВТ5–1, ОТ4–0, ОТ4, ВТ20, ВТ18, ВТ–6, ВТ14, ВТ3–1, ВТ25 и др.). Однако их пластичность хуже, чем у двухфазных сплавов.

Двухфазные титановые (α+β) -сплавы характеризуются хорошим сочетанием механических и технологических свойств. Эти сплавы обладают почти удвоенной прочностью по сравнению с чистым титаном, однако эта прочность сохраняется до температуры 430 °С. Большинство этих сплавов лучше поддаются деформированию, чем однофазные сплавы. Но их сварка затруднена, т.к. они при сварке теряют пластичность, а швы приобретают хрупкость. По структуре после закалки в них образуется структура мартенситного типа.

Увеличение количества β -фазы в сплавах до 50% обеспечивает двухфазным титановым сплавам самую высокую прочность как в отожженном, так и в закалённом состояниях.

Однофазные β -сплавы имеют наиболее высокую коррозионную стойкость. Сплавы с β -структурой реже применяются в промышленности из-за чувствительности к загрязнению газами при нагреве.

Литейные титановые сплавы (ВТЛ1, ВТ14Л, ВТ5Л и др.) имеют небольшой температурный интервал кристаллизации, высокую жидкотекучесть и хорошую плотность отливки. Титановые сплавы этой категории склонны к поглощению газов, поэтому разливку надо проводить в вакууме или в среде нейтральных газов. Для получения отливок используют чугунные или стальные формы, а также оболочковые и керамические формы.

Для фасонного литья применяют сплавы, близкие по химическому составу некоторым деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы.

Деление конструкционных титановых сплавов по типу структуры и характеристик прочности, их химический состав приведены в таблице 6.1.

Титановые сплавы подвергаются следующим видам термической обработки: отжигу для снятия напряжений, рекристаллизационному отжигу, упрочняющей термической и химико-термической обработке.

Упрочняющая термическая обработка (α+β) -сплавов состоит из закалки с температур нагрева до β - или (α+β)- области с последующим искусственным старением. После закалке образуется α’ -фаза (мартенситная фаза) игольчатого строения, представляющая собой пересыщенный твердый раствор легирующих элементов в α -фазе. При старении из α’ -фазы выделяется β -фаза, понижающая твердость сплава, или интерметаллидная фаза, вызывающая охрупчивание.

При закалке из β -области структура сплавов состоит из переохлажденного β’ -твердого раствора. При старении из такого раствора выделяется мелкодисперсная α -фаза, повышающая прочность и твердость сплава.

Для повышения жаростойкости детали из титановых сплавов подвергают различным видам диффузионной металлизации, а для повышения износостойкости – азотированию.

 

 


Таблица 6.1.

Классификация промышленных титановых сплавов
и их механические свойства.

 

Тип сплава Марка сплава Средний химический состав, % Уровень прочности Механические свойства Технология получения
σВ, МПа δ, %
α-сплавы ВТ1–0 99,28% Ti М.п.* 350–500   деформируемый
ВТ5 5% А1 С.п. 750–900  
ВТ5–1 5% А1; 2,5% Sn С.п. 750–900  
ВТ5Л 5% А1 М.п. 700–900   литейный
псевдо-α-сплавы ОТ4–1 1,5% А1; 1% Мn М.п.. 600–750   деформируемый
АТ–2 2% Zr; 1% Мо М.п. 600–750  
ВТ20 6% А1; 1% Мо; 1% V С.п. 950–1150  
ТС5 5% А1; 2% Zr; 3% Sn; 2% V В.п. 950–110  
ВТ20Л 6% А1; 2% Zr; 1% Мо С.п. ≥1000 ≤4 литейный
(α+β)-сплавы ВТ6С 5% А1; 4% V С.п. 850–1000   деформируемый
ВТЗ–1 6% А1; 2,5% Мо; 2% Сr; 0,3% Si; 0,5% Fe В.п. 1000–1200  
ВТ14 4,5% А1; 3% Мо; 1% V В.п. 900–1070  
ВТ22 5% А1; 5 % Мо; 5% V; 1% (Fе, Сr) В.п. 1100–1250  
ВТ14Л 5% А1; 3% Мо; 1% V; 0,5% (Cr, Fe) В.п.     литейный
Псевдо β-сплавы ВТ–15 3% А1; 7% Мо; 11% Сr В.п. 1350–1500   деформируемый
ТС6 3% А1; 5% Мо; 6%V–11% Сr В.п. 1400–1500  
β-сплавы   33 %Мо С.п. 800–850   деформируемый, коррозионност.

* – М.п. – малопрочные (высокопластичные), С.п. – среднепрочные,

В.п. – высокопрочные

 


Медь и её сплавы.

 

Медь действительно цветной металл: в зависимости от чистоты и состояния поверхности цвет изменяется от розового до красного. Её порядковый номер 29, имеет кристаллическую решетку ГЦК с периодом решетки 0,3608 нм. Медь плавится при температуре 1083 °С, не имеет полиморфных превращений, её удельный вес составляет 8,94 г/см3. Медь обладает высокой электропроводностью и теплопроводностью, имеет высокие технологические свойства: хорошо паяется, сваривается, легко обрабатывается давлением. В отожженном состоянии предел прочности меди составляет 200–250 МПа при относительном удлинении 40–50%. По ГОСТ 859–78 производится 11 марок меди в зависимости от содержания примесей, например: М00 содержит 99,99% Cu, М0 – 99,97% Cu, М2 – 99,7% Cu
и т. д. Благодаря высокой электропроводности медь нашла широкое применение в электротехнике. Из меди изготавливают шины, ленты, кабели, обмотки электродвигателей и др. Примеси изменяют свойства меди. Понижают электропроводность примеси, которые образуют с медью твёрдые растворы: фосфор, мышьяк, алюминий, олово.

Высокая теплопроводность меди делает её пригодной для водоохлаждаемых тиглей, кристаллизаторов, поддонов и изложниц для отливки титана и др.

На механические свойства меди примеси влияют незначительно, в большей мере они зависят от состояния (литое или деформированное). Для повышения прочности медь легируют цинком, алюминием, оловом, никелем, железом или подвергают холодной пластической деформации. В результате холодной пластической деформации медь наклёпывается и её временное сопротивление разрыву может достигать 400–450 МПа, при одновременном снижении пластичности и электропроводности на 2–4%.

Восстановить пластичность меди можно рекристаллизационным отжигом при температуре 500–600 °С.

Медные сплавы по технологическим свойствам подразделяются на деформируемые (при получении листов, полос, профилей, проволоки) и литейные (при получении отливок в песчаные или металлические формы). По способности упрочняться в результате нагрева медные сплавы делятся на упрочняемые и не упрочняемые термической обработкой. По химическому составу более широко известно деление медных сплавов на латуни и бронзы.

В латунях главным легирующим элементом является цинк. Латуни получили широкое распространение благодаря сочетанию высоких механических и технологических свойств. Структура и свойства латуней определяется диаграммой состояния «Cu – Zn» (рис. 6.3).

 

Рис. 6.3. Диаграмма состояния системы «Cu – Zn»

 

Содержание цинка в кристаллической решетке может достигать 39%. Латуни, состоящие из меди и цинка, называют простыми. Они могут быть однородными (до 39% цинка) и двухфазными (более 39% цинка). Однофазные латуни имеют высокую пластичность, т. к. состоят из однофазного α -твёрдого раствора. Двухфазные латуни при наличии β -фазы имеют более высокую прочность, но пластичность при этом снижается (рис. 6.4).

Простые латуни маркируются буквой «Л» и цифрой, показывающей процентное содержание меди. Латунь Л80 содержит 80% меди и 20% цинка. Простые латуни поставляются в виде листов, ленты, прутков, проволоки и согласно ГОСТ 15527–70 имеют обозначение Л96, Л90,…, Л59.

Рис. 6.4. Влияние содержания цинка на свойства латуней

 

Специальные (многокомпонентные) латуни содержат и другие легирующие элементы: Al, Ni, Mn, Sn и др. Алюминий, кремний, марганец и никель повышают механические свойства латуни и сопротивление коррозии, а свинец улучшает обрабатываемость резанием. В специальных латунях после буквы «Л» следуют буквы русского алфавита, обозначающие легирующий элемент: А – Al, Н – Ni, К – Si, С – Pb, О – Sn, Ж – Fe,
Mц – Мn, Ф – Р, Б – Ве, Ц – Zn
. Цифры после букв показывают среднее содержание меди и легирующих элементов в %. Например: ЛК 80–3 содержит 80% меди, 3% кремния, 17% цинка.

Простые и специальные латуни относятся к деформируемым сплавам и используются как конструкционный материал там, где требуются высокая прочность и коррозионная стойкость: в трубопроводной арматуре, в химическом машиностроении и особенно в судостроении. Изготавливают из латуней листы, ленту, проволоку, а затем из этого проката – радиаторные трубки, снарядные гильзы, трубопроводы, шайбы, гайки, втулки, уплотнительные кольца, токопроводящие детали электрооборудования.

Кроме деформируемых латуней, применяются и литейные латуни, которые содержат большое количество добавок для улучшения литейных свойств. Их обозначение отличается от деформируемых латуней. В них содержание компонента указывается после буквы обозначения: ЛЦ40Мц3Ж – содержит 40% Zn, 3% Mn, 1% Fe, остальное медь.

Механические свойства литейных латуней существенно зависят от способа получения отливок – песчано-глинистые формы, керамические или кокиль. Из литейных латуней изготавливают паровые и воздушные клапаны, корпуса кранов, пробки топливной и воздушной аппаратуры.

Бронзы – это сплавы меди со всеми другими элементами: оловом, алюминием, кремнием, бериллием и др. Бронзы различают по химическому составу и состоянию обработки. В некоторых случаях прочность таким способом может быть повышена до 750 МПа, по сравнению с обычной прочностью двухкомпонентных бронз – 400–500МПа.

Бронзы называют по наличию легирующего элемента в её составе: алюминиевые, оловянистые, кремнистые, бериллиевые и т. д. Бронзы маркируют буквами «Бр» (бронза), за которыми следуют буквы и цифры, указывающие на состав и содержание в % легирующих элементов. Например:
Бр ОЦС 4–4–2,5 содержит 4% олова, 4% цинка, 2,5% свинца, остальное медь; Бр КМц 3–1 содержит 3% кремния, 1% марганца, остальное медь.

Оловянистые бронзы известны с бронзового века. Они, как и другие сплавы, делятся на деформируемые (<10% Sn) и литейные (>10% Sn). В прошлом бронзы получили название в зависимости от их назначения: колокольная (20–30% олова), зеркальная (30–35% олова), монетная (4–10% олова), пушечная (8–18% олова). Оловянистые бронзы отличаются хорошими литейными свойствами – высокой жидкотекучестью и малой усадкой. С целью экономии олова в бронзы добавляют цинк в таком количестве, чтобы он полностью растворялся в меди, образуя твёрдый раствор, тем самым повышая механические свойства. Для улучшения обрабатываемости резанием в оловянистые бронзы добавляют свинец (например, БрО6Ц4С17: 6% Sn, 4% Zn, 17% Pb, остальное Cu). Литейные оловянистые бронзы, обладая высокой коррозионной стойкостью в воде и на воздухе, применяются для пароводяной арматуры.

Деформируемые оловянистые бронзы характеризуются более низким содержанием олова (например: Бр ОЦ4–3 содержит 4% Sn, 3% Zn, остальное медь) и имеют однофазную структуру твёрдого раствора. После холодной обработки давлением бронзы подвергаются отжигу при 600–700 °С. Они пластичны и более прочны, чем литейные. Кроме того, деформируемые оловянистые бронзы обладают высокими упругими свойствами, поэтому их используют для получения пружин, мембран и др.

Алюминиевые бронзы обычно содержат от 5 до 10% алюминия. Механические и коррозионные свойства этих бронз выше, чем у оловянистых. Алюминиевые бронзы можно подвергать закалке и старению. Однофазные алюминиевые бронзы (Бр А7) более пластичны, чем двухфазные, и относятся к деформируемым. Они обладают высокой прочностью и пластичностью (σВ = 400–450 МПа, δ = 60%).

Легируют алюминиевые бронзы железом, никелем, марганцем и др. для устранения литейных недостатков и увеличения механических свойств после упрочняющей термической обработки (закалки с последующим старением). Например, у бронзы Бр АЖН10–4–4 (10% Al, 4% Fe, 4% Ni, остальное медь) твёрдость увеличивается от 1500 до 4000 НВ; из неё изготавливают седла клапанов, направляющие втулки, шестерни и др.

Кремнистые бронзы содержат до 3% кремния и являются заменителями оловянистых бронз, для улучшения механических свойств их дополнительно легируют никелем и марганцем. Обладая высокой упругостью и антикоррозионными свойствами, эти бронзы применяются для изготовления упругих элементов различных механизмов. Из бронзы Бр КМц3–1 (3% Si, 1% Mn, остальное медь) изготавливают стопорные и упорные кольца насосов, мембраны датчиков давления.

Свинцовые бронзы обладают высокими антифрикционными свойствами, хорошей теплопроводностью (например, Бр С30), поэтому из этих бронз изготавливают вкладыши подшипников, работающих при больших давлениях и скоростях.

Бериллиевые бронзы содержат не более 2,5% бериллия (например,
Бр Б2: 2% Be, остальное медь). Бериллий образует с медью твёрдый раствор переменной растворимости и, следовательно, такие бронзы можно подвергать упрочняющей термической обработке (закалке от 780 °С с последующим старением от 320 °С). После термической обработки повышаются как прочностные, так и упругие свойства: σВ = 1500 МПа, τУПР = 600–
–740 МПа. Бериллиевую бронзу применяют в виде пружин в часовых механизмах, электроаппаратуре, в качестве упругих контактов.

Алюминий и его сплавы

 

Алюминий – металл серебристо-белого цвета, имеет кристаллическую ГЦК решетку, температура плавления 660 °С, удельный вес 2,7 г/см3. Обладает высокой электропроводностью и теплопроводностью, коррозионно-стоек за счет образования на поверхности защитной оксидной плёнки. Имеет малую прочность (σВ = 60–80 МПа) и твёрдость (250 НВ), пластичен
(δ = 35–50%). При пластической деформации значительно наклёпывается
(σВ = 150–180 МПа, δ = 1,5%, 450 НВ).

Технический алюминий выпускается в виде деформируемого полуфабриката (листы, профили, прутки и др.).

Механические свойства алюминия зависят от его чистоты и состояния. Увеличение содержания примесей и пластическая деформация повышают прочность и твёрдость алюминия (табл. 6.2). Ввиду низкой прочности применяют для ненагруженных деталей и элементов конструкций, когда от материала требуется лёгкость, свариваемость, пластичность. Изготавливают рамы, трубопроводы, фольгу, цистерны для перевозки нефти и нефтепродуктов, посуду и др.

Свойство высокой теплопроводности используют для изготовления теплообменников в промышленных и бытовых холодильных установках. Свойство высокой электрической проводимости используют при изготовлении конденсаторов, проводов, кабелей, шин и т. п.

 

Таблица 6.2.

Механические свойства алюминия

 

Марка Сумма примесей, % Состояние σВ , МПа σ0,2 , МПа δ, % HB, МПа
A995 0,005 Литье      
A5 0,5      
A0        
Деформированное и отожженное        
Деформированное        

 

Алюминий имеет высокую отражательную способность. Это позволяет использовать его в прожекторах, рефлекторах, экранах телевизоров. Он обладает высокой коррозионной стойкостью к морской воде, органическим кислотам, устойчив в нейтральных растворах солей магния, натрия. Химическая стойкость алюминия различной чистоты обуславливается образованием на его поверхности тончайшей, но плотной беспористой плёнки окиси алюминия Al2O3.


 

Рис. 6.5. Классификация алюминиевых сплавов

 

В машиностроении чистый алюминий практически не используется. Основное применение алюминия – это производство сплавов, достоинство которых в их малом удельном весе.

Алюминиевые сплавы классифицируют по технологии изготовления, способности к упрочнению термической обработкой и свойствам (рис. 6.5). Технические алюминиевые сплавы подразделяют на две группы: применяемые в деформированном виде (прессованном, катаном, кованном) и в литом (деформированные и литейные сплавы). Границу между сплавами этих групп определяет предел насыщения твёрдого раствора при эвтектической температуре (рис. 6.6). Деформируемые и литейные алюминиевые сплавы подразделяются на не упрочняемые и упрочняемые в результате термической обработки.

Рис. 6.6. Диаграмма состояния «Алюминий – легирующий элемент»

 

Основными легирующими элементами алюминиевых сплавов являются медь, магний, кремний, марганец, цинк, реже литий, никель, титан. Легирующие элементы повышают температуру рекристаллизации алюминия. Многие легирующие элементы образуют с алюминием твёрдые растворы ограниченной переменной растворимости и промежуточные фазы СuАl2, Mg2Si и др. Это даёт возможность подвергать сплавы упрочняющей термической обработке, состоящей из закалки на пересыщенный твёрдый раствор и естественного или искусственного старения.

К деформируемым сплавам неупрочняемым термической обработкой относятся сплавы АМц и АМг.

Сплавы типа АМц (АМц1) относятся к системе «Аl – Мn»; структура состоит из α -твёрдого раствора и вторичных выделений фазы МnАl6, переходящих в твёрдый раствор при повышении температуры. При легировании железом вместо МnАl6 образуется сложная тройная фаза (Мn, Fе)Аl6, которая не растворяется в алюминии, поэтому эти сплавы не упрочняются термической обработкой. В отожженном состоянии обладают высокой пластичностью (δ = 18–22%) и низкой прочностью (σВ = 130 МПа).

Сплавы типа АМг (АМг1, АМг5) относятся к системе «Аl – Мg». Магний образует с алюминием α -твёрдый раствор, концентрация которого при повышении температуры увеличивается от 1,4 до 17,4% в результате растворения фазы Мg2Аl3. Сплав АМг в отожженном состоянии имеет
σВ = 190 МПа, δ = 23%

Сплавы типа АМц и АМг упрочняют с помощью пластической деформации и используют в нагартованном (80% наклёпа) и полунагартованном (40% наклёпа) состояниях. Применение наклёпа ограниченно из-за резкого снижения пластичности, поэтому в большинстве случаев их используют в отожженном состоянии. Температура отжига: 350–420 °С.

Сплавы типа АМц и АМг применяют для изделий, получаемых глубокой вытяжкой или сваркой, от которых требуется высокая коррозионная стойкость (трубопроводы для бензина и масла, сварные баки и т. п.).

К деформируемым сплавам, упрочняемым термической обработкой, относятся сплавы системы «Аl – Сu». Они характеризуются хорошим сочетанием прочности и пластичности. Наиболее характерными представителями этих сплавов являются дуралюмины, широко применяемые в авиа-, судо- и ракетостроении. Согласно диаграмме «Аl – Сu» (рис. 6.7), медь с алюминием образуют твёрдый раствор, максимальная концентрация меди в котором 5,65% при эвтектической температуре. С понижением температуры растворимость меди уменьшается, достигая 0,1% при 20 °С. Из твёрдого раствора выделяется θ -фаза – СuАl2, содержащая 54,1% Сu. Она имеет объёмноцентрированную тетрагональную кристаллическую решетку и обладает сравнительно высокой твёрдостью. В сплавах дополнительно легированных магнием образуется ещё ς -фаза (Аl2СuМg) с ромбической кристаллической решеткой.

Рис. 6.7 Диаграмма состояния «Al – Cu»

 

Маркируются дуралюмины буквой «Д» и цифрой, означающей номер сплава, например: Д1, Д16, Д20 и т. д. Поставляются в виде сортового проката в отожженном и термически упрочненном состоянии. Упрочняющая термическая обработка состоит из закалки и естественного старения. При закалке дуралюмины охлаждают в воде при 40 °С. После закалки структура состоит из пересыщенного раствора и нерастворимых фаз, образуемых примесями. При естественном старении образуются зоны Гинье-Престона, богатые медью и магнием.

Зоны Гинье-Престона – это скопление атомов меди, неразрывно связанных с α-твёрдым раствором. Они значительно тормозят перемещение дислокаций, что и является причиной возрастания прочности при старении. Старение продолжается пять–семь суток. Длительность старения значительно сокращается при увеличении температуры до 40 °С и особенно
до 100 °С. После закалки и искусственного старения сплавы обладают лучшей пластичностью и менее чувствительны к концентраторам напряжений. Искусственному старению (при 190 °С, в течение 10 часов) подвергаются детали, используемые для работы при повышенных температурах
(до 200 °С).

Кроме дуралюминов к термически упрочняемым деформируемым сплавам относятся следующие алюминиевые сплавы: ковочные (АК4-1, АК6, АК8 и т. д.), маркируемые буквами АК, и высокопрочные (В95, В96 и т. д.), маркируемые буквой В.

По химическому составу ковочные сплавы близки к дуралюминам, отличаясь от них более высоким содержанием кремния. Детали из ковочных сплавов подвергают закалке от 500–575 °С и старению при 150–165 °С в течение 6–15 часов. Дополнительное легирование Ni, Fe, Ti повышает температуру рекристаллизации и жаропрочность этих сплавов до 300 °С, что позволяет использовать их при изготовлении поршней, лопаток, дисков осевых компрессоров турбореактивных двигателей и т. п.

Высокопрочные алюминиевые сплавы принадлежат к системе
«Аl – Ζn – Мg – Сu» и содержат добавки марганца, хрома, циркония. Эти элементы увеличивают неустойчивость твердого расплава, ускоряют его распад и усиливают старение сплава. Наибольшее упрочнение вызывают закалка с температур 465–475 °С и старение при 140 °С, в течение 16 часов. После такой обработки сплав В95 имеет σВ = 569–600 МПа, δ = 9–12%, 1500 НВ. Сплавы применяют для высоконагруженных деталей, конструкций, работающих в условиях напряжения сжатия.

Основные требования к литейным алюминиевым сплавам – сочетание хороших литейных свойств (высокой жидкотекучести, небольшой усадки, малой склонности к образованию горячих трещин и пористости) с оптимальными механическими и химическими (сопротивление коррозии) свойствами. К литейным относятся сплавы эвтектического состава на основе систем «Al – Si», «Al – Cu», «Al – Mg».

Лучшими литейными свойствами обладают эвтектические сплавы на основе «Al – Si» (силумины) (рис. 15.8), например: АЛ2, АЛ4, АЛ9. Наиболее распространён сплав, содержащий 10–13% Si (АЛ2), обладающий высокой коррозионной стойкостью, большой плотностью отливок. В структуре содержит эвтектику, состоящую из α -твёрдого раствора кремния в алюминии и кристаллов практически чистого кремния. Кремний при затвердевании эвтектики выделяется в виде грубых кристаллов игольчатой формы, которые играют роль внутренних надрезов в пластичном α -твёрдом растворе. Такая структура обладает низкими механическими свойствами.

Рис. 6.8. Диаграмма состояния системы «Al–Si».

 

Силумины обычно модифицируют натрием, который в виде хлористых и фтористых солей вводят в жидкий сплав в количестве 2–3% от массы сплава. В этом случае в структуре сплава вместо избыточного кремния появляются кристаллы α -твёрдого раствора. Это приводит к увеличению пластичности и прочности.

Для легирования силуминов используют магний, медь, марганец, титан. Растворяясь в алюминии, они повышают прочность, твёрдость. Медь улучшает обрабатываемость резанием, титан оказывает модифицирующее действие. Медь и магний, обладая переменной растворимостью в алюминии, способствует упрочнению силуминов при термической обработке, состоящей из закалки и искусственного старения. Температура закалки различных силуминов находится в пределах 515–535 °С, температура старения – 150–180 °С.

Из легированных силуминов наибольшее применение имеют сплавы с добавками магния АК7ч, (ч – содержание примесей 0,1–0,3%), магния и марганца (АК9ч). Наибольшее упрочнение вызывает метастабильная
β -фаза (Mg2Si). Легированные силумины применяют для средних и крупных литых деталей ответственного назначения: корпусов компрессора, картеров, головок цилиндров.

Сплавы системы «Al – Cu» характеризуются высокой прочностью при обычных и повышенных температурах, хорошо обрабатываются резанием и свариваются, но (из-за отсутствия эвтектики) обладают плохими литейными свойствами. Сплавы склонны к хрупкому разрушению вследствие выделения по границам зерен грубых частиц θ -фазы: CuAl2 и Al7Cu2Fe, поэтому их применяют в закалённом состоянии, когда эти соединения переведены в твёрдый раствор. Во время нагрева сплава под закалку наряду с растворением θ -фазы из твёрдого раствора выпадают мелкодисперсные частицы фазы Al12Mn2Cu, увеличивающие прочность при обычных и повышенных температурах. После закалки: σВ = 320 МПа, σ0,2 = 180 МПа, 800 НВ.

Сплавы системы «Al – Cu» используют для деталей, работающих при температурах до 300 °С. Так как эти сплавы малоустойчивы против коррозии, то отливки подвергают анодированию, химическому оксидированию и окраске.

Сплавы системы «Al – Mg» обладают высокой коррозионной стойкостью во многих агрессивных средах, обрабатываются резанием и свариваются. Дополнительное легирование бериллием, титаном и цирконием вызывает измельчение зерна и затормаживание процесса естественного старения, приводящего к снижению пластичности и коррозионной стойкости. Термообработка состоит из закалки с охлаждением в масле (40–50 °С). Выдержка при температуре закалки составляет 12–20 часов, что обеспечивает растворение частиц Al3Mg2 в α-твёрдом растворе и получение однородного раствора. Добавление до 1,5% Ѕi улучшает литейные свойства.

Сплавы системы «Al – Mg» применяют для изготовления деталей, работающих в условиях высокой влажности, в судо-, самолето- и ракетостроении.


Неметаллические материалы

Полимеры и пластмассы

Полимеры (от греческого polymeres – состоящий из многих частей, многообразный, от poly – много и meros – доля, часть) – соединения с высокой молекулярной массой, молекулы которых состоят из большого числа регулярно или нерегулярно повторяющихся групп атомов – звеньев.

Молекулы, состоящие из многочисленных элементарных звеньев (мономеров) одинакового химического состава и структуры, называются макромолекулами. Свойства вещества определяются не только химическим составом этих макромолекул, но и их взаимным расположением и строением. Поперечное сечение макромолекулы составляет, как правило, несколько нанометров, а длина достигает нескольких тысяч нанометров или нескольких микрометров, поэтому макромолекулы обладают хорошей гибкостью.

По форме макромолекул полимеры делят на линейные (цеповидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые (рис. 7.1). Полимеры с линейной структурой эластичны, при нагревании размягчаются, растворимы в органических растворителях. Полимеры с сетчатой структурой обладают наибольшей прочностью и теплостойкостью.

Рис. 7.1. Форма макромолекулы полимеров: а – линейная; б – разветвленная;
в – ленточная; г – пространственная, сетчатая, д – паркетная

 

По фазовому состоянию полимеры подразделяют на аморфные и кристаллические. Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки (рис. 7.2). Пачка состоит из многих рядов макро молекул, расположенных последовательно друг за другом. Пачки способны перемещаться относительно соседних элементов, так как они являются структурными элементами.

В случае образования кристаллической структуры атомы соседних цепей расположены в правильном трехмерном порядке, образуя определенную пространственную решетку. Кристаллические участки полимера чередуются с аморфными, поэтому степень кристалличности в полимерах никогда не достигает 100%, в отличие от металлов. Кристалличность сообщает полимеру большую жесткость и твердость, а также теплостойкость. При длительном хранении, эксплуатации и переработке надмолекулярные структуры могут претерпевать изменения.

Рис. 7.2. Схематичное строение пачки:

а – объединение макромолекул в пачки; б – пачка с аморфным участком

 

По полярности полимеры подразделяют на полярные и неполярные. Полярность определяется наличием в их составе диполей – разобщенных центров распределения положительных и отрицательных зарядов.

Неполярные полимеры, например:

– полиэтилен, – фторопласт-4

являются высококачественными диэлектриками, обладают хорошей морозостойкостью, но имеют небольшую прочность (σВ = 20–45 МПа).

Полярные, например:


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.091 с.