Связь бесконечно малой величины с бесконечно большой — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Связь бесконечно малой величины с бесконечно большой

2017-10-16 1321
Связь бесконечно малой величины с бесконечно большой 0.00 из 5.00 0 оценок
Заказать работу

ТЕОРИЯ ПРЕДЕЛОВ

 

 

Витебск2006


 

Составитель Т.К. Гресюк

 

Издание утверждено на заседании кафедры М и Ф

«20» марта 2006 г., протокол № 8

 

 

Зав. кафедрой Л.Л. Гладков

 

 


ТЕОРИЯ ПРЕДЕЛОВ

Бесконечно малая величина

Бесконечно большая величина

Связь бесконечно малой величины с бесконечно большой

Понятие о пределе переменной величины

5) Предел функции

 

Мы знаем, что в математике и ее приложениях встречаются величины постоянный и величины переменные. На числовой оси постоянной величине соответствует неподвижная точка , а переменной величине - движущаяся вправо или влево точка .

Закон изменения переменной величины можно задать последовательностью числовых значений, которые она принимает.

 

Бесконечно малая величина

Возьмем переменную величину , принимающую последовательно значения:

; ; ; …

или

; ; ; …

По мере увеличения номера места, занимаемого числами этих последовательностей, абсолютная величина уменьшается, и какое бы мы малое положительной число ни выбрали, в каждой из этих последовательностей найдется число, начиная с которого абсолютная величина значений будет меньше выбранного .

Пусть например , то начиная с шестого члена, который равен , все за ним следующие члены будут меньше по абсолютной величине заданного нами .

В этом случае говорят, что величина неограниченно близко приближается к нулю или стремиться к нулю .

Определение: Бесконечно малой величиной называется переменная величина , которая при своем изменении становится, а в дальнейшем и остается меньше по абсолютной величине сколь угодно малого положительного числа

. (1)

Это значит, что для любого сколь угодно малого найдется , что для всех будет выполняться, что .

 

Бесконечно большая величина

Пусть переменная величина принимает последовательно значения:

; ; ; …

или

- ; - ; - ; … -

Мы видим, что абсолютная величина возрастает с увеличением номера , то есть, задав , , мы найдем в заданной последовательности номер , что для всех будет выполняться неравенство

.

Определение: Бесконечно большой величиной называется переменная , которая при своем изменении становится, а в дальнейшем и остается, по абсолютной величине больше сколь угодно большого положительного числа , то есть

.

Если бесконечно большая величина, то условились записывать .

 

Связь бесконечно малой величины с бесконечно большой

Между бесконечно малой и бесконечно большой величинами существует обратная зависимость, а именно:

если - бесконечно малая величина, не равная 0, то обратная ей величина - бесконечно большая величина ( - б/м, то - б/б);

если - бесконечно большая величина, то обратная - бесконечно малая величина.

 

ТЕОРЕМЫ О ПРЕДЕЛАХ

Теорема I. Переменная величина не может иметь двух различных пределов.

Теорема II. Предел суммы конечного числа переменных величин, имеющих пределы, равен сумме пределов этих переменных величин.

Доказательство: Докажем для двух переменных величин.

- переменные

Сложив эти равенства, получим ,

.

Имеем в левой части разность между переменной и постоянной , в правой бесконечно малую.

Следовательно, согласно определению предела

,

.

Точно также можно доказать для трех, четырех и любого конечного числа переменных.

Теорема III. Предел разности переменных, имеющих пределы, равен разности пределов этих переменных

.

Теорема IV. Предел произведения конечного числа переменных, имеющих пределы, равен произведению пределов этих переменных.

Доказательство:

Дано, что , . Докажем теорему для двух переменных, то есть нужно доказать, что

.

Так как

то

,

.

Умножим эти равенства, получим

,

В левой части имеем разность между переменной и постоянной , в правой части сумму бесконечно малых величин (теорема о б/м).

Следовательно,

.

Эту теорему можно доказать для любого конечного числа переменных.

Следствие 1: , где постоянная.

Следствие 2: , где - любое действительное значение.

.

Теорема V. Предел частного от деления двух переменных величин, имеющих пределы, равен частному от деления пределов делимого и делителя при условии, что предел делителя не равен нулю

, если .

Предел функции

О пределе функции можно говорить только при условии задания предела, к которому стремится ее аргумент , без этого условия вопрос о пределе функции не имеет смысла.

Определение: Число называется пределом функции в точке , если для всех значений , достаточно близких к и отличных от , значение функции сколь угодно мало отличается от числа

.

Иначе говоря, число называется пределом функции в точке , если для всех значений , для которых модуль разности между величиной и есть величина бесконечно малая, модуль разности между и есть также величина бесконечно малая

- б/м при условии - б/м.

 

ВЫЧИСЛЕНИЕ ПРЕДЕЛОВ ФУНКЦИЙ

Для успешного вычисления пределов функций необходимо знать следующие теоремы:

1) , где - постоянная;

2) , где - постоянная;

3) если и существуют, то

,

;

4) , если ;

5) ;

6) I и II замечательные пределы:

,

,

.

Рассмотрим сначала непосредственное нахождение предела функции:

Пример 1: Найти .

Проверим, не обращается ли значение знаменателя в нуль при :

.

Подставим предельное значение функции и получим:

.

Пример 2: Если предел делителя равен 0, а предел делимого есть число, отличное от нуля, то предел дроби не существует или дробь имеет бесконечный предел:

.

 

Пример 3:

.

Так как - бесконечно малая величина, а обратная ей - бесконечно большая величина.

;

.

Пример 4:

.

Пример 5:

.

Иногда при подстановке в функцию предельного значения аргумента получаются выражения вида:

; ; ; ; .

Их называют «неопределенностями».

В этих случаях для нахождения предела необходимо предварительно выполнить некоторые преобразования данного выражения.

Рассмотрим некоторые приемы.

Пример 1: Вычислить

Пример 2: Вычислить

Пример 3: Вычислить

Итак, чтобы найти предел частного двух функций, где пределы числителя и знаменателя равны 0, нужно преобразовать функцию таким образом, чтобы выделить в делимом и делителе сомножитель, предел которого равен и сократить дробь на этот сомножитель, найти предел частного.

Нужно знать формулы:

Пример 4:

Пример 5:

Пример 6:

Пример 7:

 

Рассмотрим примеры отыскания предела функции при .

Пример 8:

Знаменатель – бесконечно большая величина, а обратная ей – бесконечно малая величина, следовательно, .

Пример 9: Найти - числитель и знаменатель бесконечно большие величины, то есть неопределенность вида .

Преобразуем данное выражение, разделив числитель и знаменатель на , получим:

, так как ; .

Пример 10:

.

Пример 11:

Пример 12:

Пример 13:

Пример 14:

Рассмотрим примеры, в которых используются I и II замечательные пределы.

Пример 15: Найти ,

Пример 16:

При решении более сложных примеров нередко используют эквивалентность бесконечно малых величин.

Две бесконечно малые величины и называются эквивалентными, если .

при , ;

,

то есть одну бесконечно малую величину можно заменить ей эквивалентной.

Пример 17:

Пример 18:

, при

, при

Рассмотрим вычисление пределов с использованием II замечательного предела.

Пример 19:

Пример 20:

, так как ,

а показатель степени

Пример 21:

,

так как , а (смотрите свойство 5)

Пример 22:

,

так как , где , а показатель степени

 

Пример 23:


План 2005/2006, поз.

 

Гресюк Татьяна Казимировна

 

 

КУРС ЛЕКЦИЙ

 

 

по дисциплине

«ВЫСШАЯ МАТЕМАТИКА»

 

Теория пределов

 

для студентов заочной формы обучения

 

 

Редактор Н.В. Вердыш

 

Подписано к печати _______________

Формат 60х84/16

Усл. печ. л. _______уч.-изд. л. ______

Тираж __________ экз. Заказ _______

 

 

Учреждение образования

«ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ»

220114, г. Минск, ул. Ф.Скорины 8, к. 2

 

ПОРЯДОК

подготовки и выпуска учебно-методической литературы

в Высшем государственном колледже связи

 

ОБЩИЕ ПОЛОЖЕНИЯ

1. Учебная, учебно-методическая литература (далее – литература) издается Редакционно-издательским отделом (РИО) согласно Плану изданий ВГКС на соответствующий учебный год.

 

2. План составляется на основании заявок кафедр колледжа с учетом потребностей учебного процесса и производственных возможностей РИО. Планы кафедр рассматриваются на заседании Методической комиссии факультета, формируется сводный план изданий ВГКС, который обсуждается на заседании Методического совета (МС) и по представлению МС утверждается ректором ВГКС.

 

3. Порядок подготовки и выпуска учебных изданий с грифом учебник либо учебное пособие регулируется Инструкцией о порядке подготовки и выпуска учебных изданий для учреждений образования Республики Беларусь, утвержденной Постановлением Министерства образования Республики Беларусь 21.01.2005 №6. Самостоятельное помещение в выходные данные изданий указания на статус учебника или учебного пособия без выполнения надлежащей процедуры либо корректировка утверждённого Министерством текста грифа нарушает белорусское законодательство и стандарты в сфере образования и книгопечатания.

 

4. Авторские рукописи (далее – материалы) принимаются в РИО с 1 сентября по 30 июня текущего учебного года в соответствии с установленным сроком сдачи работ на бумажном и электронном носителях. При нарушении сроков сдачи материалов зав. кафедрой представляет докладную записку на имя проректора по УР с объяснением причин невыполнения Плана изданий и новым сроком представления рукописи.

 

5. Материалы должны быть выполнены строго в соответствии с установленными РИО требованиями, объем издания не должен превышать заявленного в Плане (в рамках кафедры выделенный объем разрешается перераспределять). К материалам, которые поступают в РИО, прилагаются:

- выписка из протокола заседания кафедры о рекомендации работы к изданию;

- рецензия научного специалиста, заверенная печатью отдела кадров;

- аннотация работы;

- сведения об авторе (авторах).

 

После редактирования работа возвращается автору для внесения правок (срок правки – не более трех недель с момента возврата работы автору). При нарушении срока правки рукописи считаются вновь поступившими.

 

ТЕОРИЯ ПРЕДЕЛОВ

 

 

Витебск2006


 

Составитель Т.К. Гресюк

 

Издание утверждено на заседании кафедры М и Ф

«20» марта 2006 г., протокол № 8

 

 

Зав. кафедрой Л.Л. Гладков

 

 


ТЕОРИЯ ПРЕДЕЛОВ

Бесконечно малая величина

Бесконечно большая величина

Связь бесконечно малой величины с бесконечно большой


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.144 с.