Фармакодинамика. Локализация, механизмы действия лекарственных веществ; структуры-мишени, взаимодействие с рецепторами. Понятие о первичной и вторичной фармакодинамической реакциях. — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Фармакодинамика. Локализация, механизмы действия лекарственных веществ; структуры-мишени, взаимодействие с рецепторами. Понятие о первичной и вторичной фармакодинамической реакциях.

2017-10-15 500
Фармакодинамика. Локализация, механизмы действия лекарственных веществ; структуры-мишени, взаимодействие с рецепторами. Понятие о первичной и вторичной фармакодинамической реакциях. 0.00 из 5.00 0 оценок
Заказать работу

Влияние лекарственных веществ на органы, ткани, клетки обусловлено воздействием на биохимические субстраты, от которых зависит та или иная функция. Современные методы исследования позволяют выяснить, где находится субстрат-мишень, с которым взаимодействует лекарственное вещество, т.е. где локализовано его действие. Благодаря современным техническим средствам и усовершенствованным методическим приемам локализацию действия веществ можно установить не только на системном и органном, но и на клеточном, молекулярном и других уровнях.

Например, препараты наперстянки действуют на

сердечно-сосудистую систему (системный уровень), на сердце

(органный уровень), на мембраны кардиомиоцитов (клеточный

+ +

уровень), на Na, K - АТФазу (молекулярный уровень).

Механизм действия - это способ взаимодействия лекарственного вещества со специфическими участками связывания в организме.

Получение одного и того же фармакологического эффекта возможно с помощью нескольких препаратов, обладающих различными механизмами действия.

"Мишенями" для лекарственных средств служат рецепторы, ионные каналы, ферменты, транспортные системы и гены.

 

15. РЕЦЕПТОРЫ

Рецепторы (от лат. recipere - получать) представляют собой биологические макромолекулы, которые предназначены для связывания с эндогенными лигандами (нейротрансмиттерами, гормонами, факторами роста). Рецепторы могут взаимодействовать также с экзогенными биологически активными веществами, в т.ч. и с лекарственными.

При взаимодействии лекарственного вещества с рецептором развивается цепь биохимических превращений, конечным итогом которых является фармакологический эффект. Рецепторы имеют структуру липопротеинов, гликопротеинов, нуклеопротеинов, металлопротеинов. Рецепторную функцию могут выполнять ферменты, транспортные и структурные белки. В каждом рецепторе имеются активные центры, представленные функциональными группами аминокислот, фосфатидов, нуклеотидов и др.

Взаимодействие "вещество - рецептор" осуществляется за счет межмолекулярных связей.

Ковалентные связи - самый прочный вид межмолекулярных связей. Они образуются между двумя атомами за счет общей пары электронов. Ковалентные связи возникают главным образом при действии токсических доз лекарственных веществ или ядов, и разорвать эти связи во многих случаях не удается - наступает необратимое действие. Основываясь на принципе ковалентной связи, П.Эрлих в 1910 г. впервые создал органические препараты мышьяка и предложил их для лечения сифилиса. Эти соединения вступают в прочную ковалентную связь с SН-группами структурных белков и ферментов микроорганизмов, вследствие чего нарушается их функция и происходит гибель микроорганизмов.

Ионные связи возникают между ионами, несущими разноименные заряды (электростатическое взаимодействие). Этот вид связи характерен для ганглиоблокаторов, курареподобных средств и ацетилхолина.

Ион-дипольные и диполь-дипольные связи возникают в электрически нейтральных молекулах лекарственных веществ, чаще всего имеющих неодинаковые атомы. Пара общих электронов бывает сдвинута в сторону какого-либо одного атома и поэтому создает около него электроотрицательность, а у другого атома в силу этого создается электроположительность. Таким образом возникает полярность молекул.

В молекулах лекарственных веществ, попадающих в электрическое поле клеточных мембран или находящихся в окружении ионов, происходит образование индуцированного диполя. Поэтому дипольные связи лекарственных веществ с биомолекулами являются очень распространенными.

Водородные связи по сравнению с ковалентными являются слабыми, но их роль в действии лекарственных веществ весьма существенна. Атом водорода способен связывать атомы кислорода, азота, серы, галогенов. Для возникновения этой связи необходимо присутствие лекарственного вещества вблизи молекулы-мишени на расстоянии не более 0,3 нм, а реагирующий атом в молекуле лекарственного вещества должен находиться на одной прямой с группой ОН или NН2 в молекуле-мишени.

Вандерваальсовы связи возникают между двумя любыми атомами, входящими в лекарственное вещество и молекулы организма, если они будут находиться на расстоянии не более 0,2 нм. При увеличении расстояния связи резко ослабевают.

Гидрофобные связи возникают при взаимодействии неполярных молекул в водной среде.

Лекарственные вещества, как правило, взаимодействуют с молекулами клеток и жидких сред организма с помощью сравнительно слабых связей, поэтому действие их в терапевтических дозах является обратимым.

Выделяют четыре типа рецепторов:

1. Рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они связаны с плазматической мембраной клеток, фосфорилируют белки клеток и изменяют их активность. По такому принципу устроены рецепторы к инсулину, лимфокинам, эпидермальному и тромбоцитарному факторам роста.

2. Рецепторы, осуществляющие контроль за функцией ионных

каналов. Рецепторы ионных каналов обеспечивают проницаемость

мембран для ионов. Н-холинорецепторы, рецепторы глутаминовой и

аспарагиновой кислот увеличивают проницаемость мембран для ионов

+ + 2+

Na, K, Ca, вызывая деполяризацию и возбуждение функции клеток.

ГАМКА-рецепторы, глициновые рецепторы увеличивают проницаемость

-

мембран для Cl, вызывая гиперполяризацию и торможение функции

клеток.

3. Рецепторы, ассоциированные с G-белками. При возбуждении

этих рецепторов влияние на активность внутриклеточных ферментов

опосредуется через G-белки. Изменяя кинетику ионных каналов и

2+

синтез вторичных мессенджеров (цАМФ, цГМФ, ИФ3, ДАГ, Са),

G-белки регулируют активность протеинкиназ, которые обеспечивают

внутриклеточное фосфорилирование важных регуляторных белков и

развитие разнообразных эффектов. К числу таких рецепторов

относятся рецепторы для полипептидных гормонов и медиаторов

(м-холинорецепторы, адренорецепторы, гистаминовые рецепторы).

Рецепторы 1-3 типов локализованы на цитоплазматической мембране.

4. Рецепторы - регуляторы транскрипции ДНК. Эти рецепторы являются внутриклеточными и представляют собой растворимые цитозольные или ядерные белки. С такими рецепторами взаимодействуют стероидные и тиреоидные гормоны. Функция рецепторов - активация или ингибирование транскрипции генов.

Рецепторы, обеспечивающие проявление действия определенных веществ, называют специфическими.

По отношению к рецепторам лекарственные вещества обладают аффинитетом и внутренней активностью.

Аффинитет (от лат. affinis - родственный) - сродство лекарственного вещества к рецептору, приводящее к образованию комплекса "вещество - рецептор". Внутренняя активность - способность вещества при взаимодействии с рецептором стимулировать его и вызывать тот или иной эффект.

В зависимости от выраженности аффинитета и наличия внутренней активности лекарственные вещества разделяют на две группы.

1. Агонисты (от греч. agonistes - соперник, agon - борьба) или миметики (от греч. mimeomai - подражать) - вещества, обладающие аффинитетом и высокой внутренней активностью. Они взаимодействуют со специфическими рецепторами и вызывают в них изменения, приводящие к развитию определенных эффектов. Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект. Частичные агонисты при взаимодействии с рецепторами вызывают меньший эффект.

2. Антагонисты (от греч. antagonisma - соперничество, anti - против, agon - борьба) или блокаторы - вещества с высоким аффинитетом, но лишенные внутренней активности. Они связываются с рецепторами и препятствуют действию эндогенных агонистов (медиаторов, гормонов).

Если антагонисты занимают те же рецепторы, что и агонисты, то их называют конкурентными антагонистами.

Если антагонисты занимают другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентные антагонисты.

Некоторые лекарственные вещества сочетают в себе способность возбуждать один подтип рецепторов и блокировать другой. Их называют агонисты-антагонисты. Так, наркотический анальгетик пентазоцин является антагонистом m- и агонистом d- и k-опиоидных рецепторов.

ИОННЫЕ КАНАЛЫ

Участками связывания лекарственных веществ могут являться ионные каналы. Эти каналы представляют основные пути, по которым ионы проникают через клеточные мембраны.

Естественными лигандами ионных каналов являются медиаторы:

ацетилхолин, гамма-аминомасляная кислота (ГАМК), возбуждающие

аминокислоты (аспарагиновая, глутаминовая, глицин). Увеличение

трансмембранной проводимости определенных ионов через

соответствующие каналы приводит к изменению электрического

потенциала мембраны. Так, ацетилхолин способствует открытию

+

ионного канала N-холинорецептора, в результате чего Na проходит в

клетку, вызывая деполяризацию мембраны и развитие потенциала

-

действия. ГАМК способствует открытию ионного канала Cl, что

вызывает гиперполяризацию мембраны и развитие синаптического

торможения.

Важную роль в действии лекарственных веществ играет их способность имитировать или блокировать действие эндогенных лигандов, регулирующих ток ионов через каналы плазматической мембраны.

В последние годы большое внимание привлекают вещества,

+

регулирующие функцию К -каналов. Среди лекарственных веществ

+

имеются как активаторы, так и блокаторы К -каналов.

+

Активаторы К -каналов участвуют в механизме их открытия и

+

выхода ионов К из клетки. Если этот процесс происходит в гладких

мышцах сосудов, то развивается гиперполяризация мембраны, тонус

мышц уменьшается и снижается артериальное давление. Такой механизм

гипотензивного действия характерен для миноксидила.

+ +

Блокаторы К -каналов препятствуют их открытию и поступлению К

в клетки. Антиаритмический эффект амиодарона и соталола обусловлен

+

блокадой К -каналов клеточных мембран миокарда.

+

Блокада АТФ-зависимых К -каналов в поджелудочной железе приводит к

повышению секреции инсулина. По такому принципу действуют

противодиабетические средства группы сульфонилмочевины

(хлорпропамид, бутамид и др.).

 

ФЕРМЕНТЫ

Важной "мишенью" для действия лекарственных веществ являются ферменты. В медицине широко применяются группы лекарственных средств, снижающие активность определенных ферментов. Блокада фермента моноаминоксидазы приводит к снижению метаболизма катехоламинов и повышению их содержания в ЦНС. На этом принципе основано действие антидепрессантов - ингибиторов МАО (ниаламида, пиразидола). Механизм действия нестероидных противовоспалительных средств обусловлен ингибированием фермента циклооксигеназы и снижением биосинтеза простагландинов.

В качестве гипотензивных средств используются ингибиторы ангиотензинпревращающего фермента (каптоприл, эналаприл, периндоприл и др.). Антихолинэстеразные средства, блокирующие фермент ацетилхолинэстеразу и стабилизирующие ацетилхолин, применяются для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

ТРАНСПОРТНЫЕ СИСТЕМЫ

Лекарственные средства могут воздействовать на транспортные

системы молекул, ионов, медиаторов. Транспортную функцию выполняют

так называемые транспортные белки, переносящие вышеуказанные

молекулы и ионы через клеточную мембрану. Эти белки имеют

"распознающие участки" - места связывания эндогенных веществ, с

которыми могут взаимодействовать лекарственные средства. Блокада

+ +

Н, К -АТФазы секреторной мембраны париетальных клеток

("протонного насоса") прекращает поступление ионов водорода в

полость желудка, что сопровождается угнетением образования HCl.

Такой механизм действия характерен для омепразола, пантопразола,

которые применяются для лечения язвенной болезни желудка и

двенадцатиперстной кишки.

 

16. ГЕНЫ

Перспективной "мишенью" для действия лекарственных средств являются гены. С помощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов. Учитывая полиморфизм генов, такая задача достаточно сложна. Тем не менее исследования в области генной фармакологии получают все более широкое развитие.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.035 с.