Экспериментальное определение электрокинетического — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Экспериментальное определение электрокинетического

2017-10-11 385
Экспериментальное определение электрокинетического 0.00 из 5.00 0 оценок
Заказать работу

Потенциала

 

Электрокинетические явления, в особенности электроосмос и электрофорез, могут быть использованы для экспериментального определения одной из важнейших характеристик коллоидных систем - электрокинетического потенциала.

При этом используется уравнение Гельмгольца - Смолуховскогодля скорости электроосмосаили электрофореза:

,

где v - линейная скорость электроосмоса (электрофореза), м/с; e - диэлектрическая проницаемость дисперсионной среды; e 0 - электрическая постоянная (диэлектрическая проницаемость вакуума, 8,85´10-12 Ф/м); H - напряжённость внешнего электрического поля (H = E / l; E - напряжение на электродах, В; l - расстояние между ними, м); z - электрокинетический потенциал, В.

Уравнение выводится в предположении, что двойной электрический слой на поверхности коллоидных частиц можно рассматривать как плоский конденсатор и что разность потенциалов между его обкладками соответствует электрокинетическому потенциалу z.

В соответствии с теорией плоского конденсатора плотность заряда на его обкладках s определяется соотношением

,

где d -расстояние между обкладками, т. е. толщина плотного слоя ДЭС.

Внешнее электрическое поле, параллельное ДЭС, создаёт напряжение сдвига Fe, - пару сил, действующих на единицу площади ДЭС вдоль его поверхности:

Скорость v взаимного смещения фаз под действием этого напряжения сдвига связана с силой вязкого сопротивления среды Fh уравнением Ньютона

,

где h - вязкость дисперсионной среды; dv / dd - градиент скорости смещения дисперсионной среды относительно поверхности твёрдой фазы. Считая величину dv / dd постоянной во всём зазоре между обкладками конденсатора (ДЭС), можно принять, что

,

где v – наблюдаемая скорость взаимного смещения фаз.

При установившемся равномерном движении

и значит

,

откуда получаем окончательное уравнение Гельмгольца – Смолуховского:

.

Иногда это уравнение записывают в виде

,

где v0 = v/H электрофоретическая подвижность, служащая для сравнения способности к электрофорезу различных коллоидных систем и не зависящая от приложенного напряжения и расстояния между электродами.

Уравнение Гельмгольца – Смолуховского можно преобразовать для вычисления z -потенциала частиц дисперсной фазы при известной скорости электрофореза или электроосмоса:

или

Измеряется скорость перемещения частиц при электрофорезе или жидкой среды при электроосмосе с помощью специальных приборов. Конструкции этих приборов, а также методики измерений приводятся в практикумах или в специальных руководствах.

Экспериментально определённые значения z -потенциала в большинстве золей достигают значений до 100 мВ, что обычно несколько меньше действительного. Это расхождение обусловлено двумя эффектами, которые не были учтены при выводе уравнения Гельмгольца - Смолуховского: релаксационным эффектом (в результате нарушения симметрии диффузного слоя вокруг частицы при движении фаз в противоположные стороны) и электрофоретическим торможением (сопротивление движению частицы обратным потоком противоионов). Эти тормозящие эффекты зависят от размера частиц и толщины двойного электрического слоя. Э Хюккелем на основе теории растворов сильных электролитов было показано, что в уравнение Гельмгольца – Смолуховского следует ввести в качестве поправки множитель 2/3. Однако эта поправка необходима только тогда, когда толщина диффузного слоя значительно превышает размер гранулы, что имеет место в очень разбавленных золях.


ГЛАВА 6

 

УСТОЙЧИВОСТЬ И КОАГУЛЯЦИЯ ДИСПЕРСНЫХ СИСТЕМ

 

Устойчивостьдисперсной системы характеризуется неизменностью во времени её основных параметров - степени дисперсности и равномерного распределения частиц дисперсной фазы в среде.

Проблема устойчивости - одна из самых важных и сложных в коллоидной химии. Она имеет большое значение во многих процессах, как протекающих в природе, так и используемых в народном хозяйстве, в том числе в фармации, в особенности в технологии лекарств. Так, обеспечение устойчивости свободнодисперсных систем необходимо при получении из них лекарственных эмульсий, суспензий, пен, аэрозольных препаратов и др. С другой стороны, во многих случаях требуется нарушить устойчивость образовавшихся коллоидных растворов, тонких взвесей или эмульсий для того, чтобы вызвать структурообразование в материалах, чтобы при гравиметрическом анализе получить осадки, не пептизирующиеся при отмывании, чтобы более эффективно проводить очистку сточных вод и т. д.

 

Виды устойчивости

По предложению Н. П. Пескова (1920) устойчивость дисперсных систем подразделяют на два вида:

1. седиментационная устойчивость (устойчивость к осаждению дисперсной фазы);

2. агрегативная устойчивость (устойчивость к объединению частиц).

Первый вид устойчивости, который характеризует способность дисперсной системы сохранять равномерное распределение частиц дисперсной фазы по объёму дисперсионной среды, связан с размерами частиц. Частицы с поперечником более (10-5 см) не могут поддерживаться во взвешенном состоянии броуновским движением и будут седиментировать, т. е. оседать, если их плотность больше плотности дисперсионной среды, или всплывать, если их плотность меньше. Седиментация будет подробнее рассмотрена в главе 7.

В данном разделе мы главное внимание уделим явлениям, связанным с агрегативной устойчивостью.

Агрегативная устойчивость определяется способностью систем противодействовать процессам, ведущим к уменьшению свободной поверхности энергии.

Такими процессами являются изотермическая перегонка вещества от малых частиц к более крупным, коалесценция и агрегация частиц при их столкновениях. На практике наиболее часто приходится встречаться с процессами коалесценции (слиянием капель в эмульсиях, туманах или пузырьков в пенах) и агрегации (объединении твёрдых частиц коллоидных растворов в более или менее прочные агрегаты, которые в принципе могут быть разделены на первоначальные частицы пептизации). Агрегация может происходить в виде коагуляции или в виде флокуляции. Иногда понятия флокуляции и коагуляции из-за схожести механизма и внешних проявлений отождествляются, но всё-таки различия между ними имеются. Флокуляция происходит, как правило, с участием посторонних веществ – флокулянтов, в качестве которых могут выступать различные полимерные природные и синтетические вещества – крахмал, пектины, полиакриламид и др., а также кремниевая кислота. Она заключается в образовании рыхлых хлопьевидных агрегатов и может происходить не только в коллоидных растворах, но и в суспензиях и эмульсиях. Коагуляция (от coagulation – створаживание) – это слипание частиц дисперсной фазы, происходящее при их столкновениях в результате броуновского движения, перемешивания и т. п. Коагуляция может происходить и под влиянием только физических факторов, без введения в систему посторонних веществ.

Следует отметить, что все три упомянутые процесса укрупнения частиц приводят рано или поздно к потере системой седиментационной устойчивости, то есть к выпадению возникающих крупных частиц или хлопьев (флокул) в осадок. С другой стороны, седиментация частиц в грубодисперсных системах приводит к тому, что в образующемся осадке они тесно соприкасаются друг с другом и при определённых условиях могут потерять агрегативную устойчивость, т. е. соединятся в агрегаты.

Различные дисперсные системы могут обладать или очень высокой агрегативной устойчивостью, при которой они могут храниться в неизменном состоянии очень долгое время (даже годами), или, наоборот, очень низкой, когда их разрушение происходит вскоре после образования (например, через несколько секунд).

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.