Определение и классификация. — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Определение и классификация.

2017-10-09 472
Определение и классификация. 0.00 из 5.00 0 оценок
Заказать работу

Амины можно рассматривать как органические производные аммиака.

1). По количеству замещенных атомов водорода в молекуле аммиака на углеводородные радикалы амины подразделяют на первичные (R–NH2), вторичные (R–NH–R΄) и третичные .

΄

изобутиламин метилизопропиламин диметилэтиламин

(первичный) (вторичный) (третичный)

 

2) По природе радикала: алифатические, карбо- и гетероциклические – предельные и непредельные, а также ароматические.

3) По количеству аминогрупп: моноамино-, диамино- и др. соединения. (Вещества, содержащие при одном углеродном атоме более одной аминогруппы нестабильны).

Номенклатура. Название наиболее простых аминов образуется от названий алкильных групп, связанных с атомом азота, к которому добавляется слово «амин», например: CH3–NH2 – метиламин, (СH3)2CHCH2–NH2 – изобутиламин. Вторичные и третичные амины с одинаковыми радикалами называют исходя из названия и количества радикалов: (CH3)3N –триметиламин (CH3CH2)2NH – диэтиламин. Если радикалы различны, то перечисляют радикалы по старшинству, добавляя слово «амин»:CH3–NH–CH(CH3)2 – метилизопропиламин.

По номенклатуре IUPAC за основу названия берут название соответствующего углеводорода, а аминогруппу обозначают приставкой: H2N–CH2CH2CH2CH2CH2CH2–NH2 – 1,6-диаминогексан (гексаметилендиамин).

Получение.

1. Методы алкилирования аммиака (или аминов).

а) Аммонолиз и аминолиз алкилгалогенидов.

 

Реакция приводит к смеси первичного, вторичного, третичного аминов и четвертичной аммониевой соли. Аналогичный результат дает алкилирование аммиака и аминов спиртами, однако эта реакция идет только при 300 0C в присутствии катализатора Al2O3.

б) Первичные амины синтезируют алкилированием фталимида в присутствии основания по методу Габриэля:

 

 

Гидролиз N-фталимидных производных осуществляется нагреванием со щелочами, кислотами или лучше всего с гидразин-гидратом.

2. Восстановление других азотсодержащих функциональных органических соединений – альдиминов (кетиминов), оксимов, оснований Шиффа, нитрилов, амидов карбоновых кислот, нитросоединений и т.д.:

 

 

3. Перегруппировка амидов карбоновых кислот по Гофману:

 

 

4. Декарбоксилирование α-аминокислот имеет малое значение для химии, но широко распространено в биологических объектах.

При декарбоксилировании a-аминокислот образуются биогенные амины, выполняющие в организме важные биологичес­кие функции

 

Физические свойства. Метиламин, диметиламин, триметиламин и этиламин в обычных условиях – газы, следующие члены гомологического ряда – жидкости, с закономерно возрастающими температурами кипения. Низшие амины имеют неприятный запах, высшие запаха не имеют. Первичные и вторичные амины ассоциированы за счет образования водородных связей.

 

 

Ассоциация приводит к заметному повышению температур кипения по сравнению с соединениями с той же молекулярной массой, но не образующими водородных связей. Хорошая растворимость в воде низших аминов обусловлена образованием водородных связей с молекулами воде; по мере увеличения радикала их растворимость в воде резко уменьшается.

 

Химические свойства

 

1. Основность аминов обусловлена способностью атомов азота присоединять протон к неподеленной паре электро­нов с образованием катионов аммонийного типа. Основность аминов измеряется константой равновесия реакции гидратации:

 

Основность амина тем выше, чем больше электронная плот­ность сосредоточена на атоме азота. Благодаря +I-эффекту алкильной группы алифатические амины (особенно третичные) имеют большую электронную плотность на атоме N, чем аммиак, и следо­вательно, большую основность.

 

Таблица 19. Зависимость константы основности от типа амина

 

      NH3   CH3NH2   C2H5NH2   (C2H5)2NH  
  К в     1,8 ·10-5   4,4 ·10-4   4,7 ·10-4   9,5 ·10-4   1,6 ·10-3

 

Таблица 20. Физические свойства аминов

  Название   формула   Т.пл. / Т.кип. (0 С)   К в
  Метиламин Диметиламин Триметиламин Этиламин Диэтиламин Триэтиламин Пропиламин Дипропиламин Трипропиламин Изо пропиламин Бутиламин Изо бутиламин Втор бутиламин трет бутиламин Циклогексиламин Бензиламин α-Фенилэтиламин β-Фенилэтиламин Тетраметилендиамин Гексаметилендиамин Анилин N-Метиланилин N,N-Диметиланилин Дифениламин Трифениламин о -толуидин м -толуидин п -толуидин о -анизидин м -анизидин п -анизидин о- нитроанилин м -нитроанилин п -нитроанилин 2,4-динитроанилин 2,4,6-тринитроанилин о -фенилендиамин м -фенилендиамин п фенилендиамин Бензидин   CH3NH2 (CH3)2NH (CH3)3N CH3CH2NH2 (CH3CH2)2NH (CH3CH2)3N CH3CH2CH2NH2 (CH3CH2CH2)2NH (CH3CH2CH2)3N (CH3)2CHNH2 CH3(CH2)3NH2 (CH3)2CHCH2NH2 CH3CH2CH(CH3)NH2 (CH3)3CNH2 С6H11NH2 С6H5CH2NH2 С6H5CH(CH3)NH2 С6H5CH2CH2NH2 H2N(CH2)4NH2 H2N(CH2)6NH2 С6H5NH2 С6H5NHСН3 С6H5N(СН3)26H5)2NH (С6H5)3N o- СН3С6Н42 м- СН3С6Н42 п- СН3С6Н42 o- СН3ОС6Н42 м- СН3ОС6Н42 п- СН3ОС6Н42 o-2С6Н42 м-2С6Н42 п- NO2С6Н42 2,4-(NO2)2С6Н32 2,4,6-(NO2)3С6Н22 o- С6Н4(NН2)2 м- С6Н4(NН2)2 п- С6Н4(NН2)2 п -NН2С6Н4С6Н42 -п     - 92 / - 7,5 - 96 / 7,5 - 117 / 3 - 80 / 17 - 39 / 55 - 115 / 89 - 83 / 49 - 63 / 110 - 93 / 157 - 101 / 34 - 50 / 78 - 85 / 68 - 104 / 63 ─ / 134 - 67 / 4 ─ / 185 ─ / 187 / / 195 8 / 117 39 / 196 - 6 / 184 - 57 / 196 3 / 194 53 / 302 127 / 365 - 28 / 200 - 30 / 203 44 / 200 5 / 225 ─ / 251 57 / 244 71 / 284 114 / 307 (разл.) 148 / 332 187 / ─ 188 / ─ 104 / 251 63 / 287 142 / 267 127 / 401   4,4 . 10 -4 5,1 . 10 -4 0,6 . 10 -4 4,7 . 10 -4 9,5 . 10 -4 5,5 . 10 -4 3,8 . 10 -4 8,1 . 10 -4 4,5 . 10 -4   4,1 . 10 -4     0,23 . 10 -4     4,2 . 10 -10 7,1 . 10 -10 11 . 10 -10 0,7 . 10 -10   2,5 . 10 -10 4,9 . 10 -10 12 . 10 -10 3 . 10 -10 2 . 10 -10 15 . 10 -10 3,5 . 10 -14 3,2 . 10 -12 0,1 . 10 -12     3,3 . 10 -10 7,6 . 10 -10 11 . 10 -10 7,4 . 10 -13

Ароматические амины вследствие сопряжения неподеленной пары электронов азота с p-электронным облаком бензольного ядра являются более слабыми основаниями, причем этот эффект усиливается при введении в ароматическое кольцо электроноакцепторных группировок..С увеличением объемов заместителей, окружающих реакцион­ный центр вещества, возрастают пространственные препятствия для его атаки молекулой реагента. Это также относится и к протонированию аминов. В связи с этим амины, содержащие большие радикалы, проявляют более слабые основные свойства по сравне­нию с ожидаемыми при рассмотрении только электронных эф­фектов радикалов, окружающих атом азота.

2. Алкилирование аминов.

(C2H5)3N + C6H5CH2Cl ¾® [(C2H5)3NCH2C6H5]+ Cl

Четвертичные аммониевые соли при взаимодействии с водными растворами щелочей превращаются в гидрооксиды тетраалкиламмония.

Расщепление четвертичных аммониевых оснований по Гофману – схема получения алкенов из галогеналканов против правила Зайцева, например:

 

 

3. Ацилирование первичных и вторичных аминов происходит при реакции ангидридами или галогенангидридами кислот и приводит к N-замещенным амидам кислот:

С6Н5NH2 + (CH3CO)2O ¾® CH3CONHC6H5 + CH3COOH

N-фениламид уксусной

кислоты (ацетанилид)

 

N-пропиламид уксусной кислоты

 

4. Реакции аминов с азотистой кислотой.

В зависимости от типа амина обработка азотистой кис­лотой приводит к различным продуктам реакции.

Первичные алифатические амины при взаимодействии с азотистой кислотой выделяют азот с образованием спиртов или алкенов (с третичными углеводородными радикалами):

 

Вторичные амины образуют N-нитрозоамины:

N-нитрозометилбутиламин

 

Третичные амины алифатического ряда не взаимодействуют с НNO2, третичные жирноароматические амины (диалкилфениламины) нитрозируются в пара -положение бензольного кольца:

 

п- нитрозо-N,N-диметиламинобензол

 

Первичные ароматические амины образуют соли диазония

фенилдиазоний хлорид

 

Механизм реакций аминов с азотистой кислотой выглядит следующим образом:

 

 

 

В случае первичных аминов возникающий катион (I) теряет про­тон и превращается в диазогидрат, который в кислой среде пере­ходит в соль диазония (II), разлагающуюся с образованием карбкатиона (III) и выделением азота:

 

 

 

Конечными продуктами являются спирты или алкены в зави­симости от природы образующегося карбкатиона (III) (третичные карбкатионы легче образуют алкены). Соединения (II), у которых диазониевая группа находится при ароматическом кольце, устой­чивы на холоду и могут быть получены взаимодействием первич­ных ариламинов со смесью нитрита натрия с минеральной кисло­той при 0-10 0С. В случае вторичных аминов катион (I) отщепляет протон с обра­зованием N-нитрозоамина:

 

 

В случае взаимодействия N,N-диметиламинобензола с азотистой кислотой механизм реакции выглядит следующим образом:

 


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.046 с.