Фокусировочный механизм: грубая и точная фокусировка — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Фокусировочный механизм: грубая и точная фокусировка

2017-10-09 1408
Фокусировочный механизм: грубая и точная фокусировка 0.00 из 5.00 0 оценок
Заказать работу

Фокусировочный механизм обеспечивает движение стола или объектива для установки определенного расстояния между объектом наблюдения и оптической частью микроскопа. Это расстояние гарантирует резкое изображение объекта. "Наводка на резкость" осуществляется двумя регулировками – грубой и точной. Каждая регулировка – это свой механизм и своя рукоятка. Рукоятки управления могут быть разнесены или совмещены, но обязательно располагаются по бокам микроскопа: справа и слева попарно.

Обычно грубая фокусировка (регулировка) осуществляется парой больших рукояток (рис. 31), расположенных по обе стороны от штатива. Они совершают "черновое" движение объектива к объекту или от него. Минимальная величина перемещения составляет 1 мм за один оборот. При этом грубая фокусировка является рабочей при тех исследованиях, где увеличение микроскопа не более 400 х.

Точная фокусировка (регулировка) осуществляется парой небольших рукояток, которые обычно за один оборот придвигают стол или объектив к объекту на 0,01 -0,05 мм. Величина перемещения за один оборот зависит от конструктивных особенностей микроскопов различных фирм.

Как правило, на одну из рукояток точной фокусировки наносится шкала, которая позволяет контролировать вертикальное перемещение микроскопа относительно объекта наблюдения.

Например, отечественный микроскоп МИКМЕД-2 имеет грубое фокусировочное перемещение до 30 мм, при этом один оборот рукоятки обеспечивает перемещение на 2,5 мм, точная фокусировка осуществляется в пределах 2,5 мм при одном обороте на 0,25 мм, на одну из рукояток точной фокусировки нанесена шкала с ценой деления 0,002 мм.

Функциональное назначение фокусировочного перемещения значительно больше, чем обычно ему отводится. Без точной фокусировки не обойтись:

• если увеличение микроскопа более 400 х;

• при работе с иммерсионными объективами;

• при работе с объективами, которые не дают резкого изображения по всему наблюдаемому полю;

• если на всем видимом поле объект неровный по толщине или имеет объем.

Совмещение (коаксиальное расположение) обеих рукояток значительно упрощает работу, одновременно усложняя конструкцию и удорожая микроскоп.

 

Узел крепления и перемещения конденсора

Конденсор, как самостоятельный узел, является стыкующим элементом между осветительной системой (источником света) и микроскопом (объективом и визуализирующей частью).

Узел крепления конденсора расположен под предметным столиком. Имеет вид кронштейна с гнездом. Предназначен для установки конденсора, его фиксации и центрировки, т. е. перемещения в горизонтальной плоскости перпендикулярно оптической оси микроскопа.

Кроме того, узел имеет направляющую для фокусировочного движения (перемещения) конденсора по вертикали, вдоль оптической оси.

Каким бы образом конденсор ни устанавливался в гнезде - сбоку, сверху или снизу, - он жестко крепится с помощью стопорного винта, который предотвращает его выпадение, с одной стороны, и обеспечивает центрированное положение в процессе работы, с другой.

Центровочные винты обеспечивают совмещение осветительного пучка от источника света и оптической оси микроскопа (настройка освещения по Келеру). Это очень важный этап настройки освещения в микроскопе, влияющий на равномерность освещения и точность воспроизведения объекта, а также на контраст и разрешение элементов в изображении объекта.

Фокусировка (настройка по высоте) конденсора осуществляется с помощью ручки на кронштейне и, так же как центрировка, влияет на работу всей оптической части микроскопа.

Конденсор может быть неподвижным. Обычно подобная конструкция присуща учебным микроскопам. Эти микроскопы применяются при рутинной работе, где не требуется применение дополнительных методов контрастирования, и объект не требует более детального исследования.

Узел крепления объективов

Существует несколько типов крепления объективов в микроскопе:

• ввинчивание объектива непосредственно в тубус (как правило, на учебных «школьных» микроскопах);

• "салазки" — крепление объективов с помощью специального безрезьбового устройства (направляющей);

• револьверное устройство с несколькими гнездами.

В настоящее время самым распространенным типом крепления объективов является револьверное устройство (револьверная головка) (рис. 33).

Узел крепления объективов в виде револьверного устройства выполняет следующие функции:

• смену увеличения в микроскопе за счет вращения головки, в каждое гнездо которой ввинчивается объектив определенного увеличения;

• фиксированную установку объектива в рабочее положение;

гарантированное центрирование оптической оси объектива относительно оптической оси микроскопа в целом, включая осветительную систему.

Револьверное устройство может быть 3-х, 4-х, 5-ти, 6-ти или 7-гнездным в зависимости от класса сложности микроскопа и решаемых им задач.

 

В микроскопах, где применяется дифференциально-интерференционный контраст, в револьверной головке над гнездом имеется один или несколько пазов для установки направляющей с призмой.

В учебных микроскопах объективы обычно крепятся таким образом, чтобы замена их была затруднена (т. е. делаются несъемными).

Порядок следования объективов должен строго соблюдаться: от меньшего увеличения к большему, при этом движение револьверной головки осуществляется по часовой стрелке.

Как правило, при сборке микроскопов производится операция подбора объективов - комплектация. Это позволяет не терять изображение объекта из поля зрения при переходе от одного увеличения к другому.

И еще одно условие должно обеспечивать револьверное устройство - парфокальность. Гнездо револьвера, вернее, его внешняя поверхность, является материальной базовой поверхностью для отсчета высоты объектива и длины тубуса объектива (микроскопа). Объектив должен быть ввинчен в гнездо таким образом, чтобы между ним и револьверной головкой не было зазора. При этом обеспечиваются расчетные значения всех сборочных оптических элементов в микроскопе, а также конструктивное и технологическое их обеспечение. Это значит, что если будет получено резкое изображение объекта с одним объективом, то при переходе к другому в пределах глубины резкости объектива резкое изображение объекта сохраняется.

Парфокальность в комплекте объективов обеспечивается конструкцией микроскопа и технологией изготовления. При отсутствии этого условия при переходе от одного объектива к другому требуется значительная подфокусировка по резкости изображения.

Узел крепления окуляров (тубуса) в современных микроскопах представляет собой кронштейн с гнездом, в которое устанавливаются различные виды насадок: визуальные насадки (монокулярные и бинокулярные (рис. 34)), фотометрические и спектрофотометрические, микрофото - и адаптерные устройства для видеосистем. Кроме того, в это гнездо могут быть установлены: насадки сравнения, рисовальные аппараты, экранные насадки, а также осветители падающего света. Фиксация устройств осуществляется стопорным винтом.

Невозможно представить модель современного микроскопа без системы документирования. Практически это бинокулярная насадка с выходом на фото- или телесистему.

Конструктивно узел крепления окуляров может быть снабжен дополнительным оптико-механическим модулем сменного увеличения, получившего название "Оптовар" (Optovar). Как правило, он имеет несколько ступеней увеличения от меньшего единицы до 2,5 х, но есть варианты и с одной ступенью. Обычно модуль располагается между визуальной насадкой и револьверным устройством, обеспечивая тем самым дополнительное увеличение, как для визуального канала, так и для фотовыхода. Конечно, наибольшее значение это имеет для фотоканала.

 

ОПТИКА МИКРОСКОПА

Оптические узлы и принадлежности обеспечивают основную функцию микроскопа – создание увеличенного изображения рассматриваемого объекта с достаточной степенью достоверности по форме, соотношению размеров и цвету. Кроме того, оптика микроскопа должна обеспечивать такое увеличение, контраст и разрешение элементов, которые позволят произвести наблюдение, анализ и измерение, соответствующие требованиям методик клинико-диагностической практики.

Основными оптическими элементами микроскопа являются: объектив, окуляр, конденсор. Вспомогательными элементами – осветительная система, оптовар, визуальные и фотонасадки с оптическими адаптерами и проективами.

Объектив микроскопа предназначен для создания увеличенного изображения рассматриваемого объекта с требуемым качеством, разрешением и цветопередачей.

Классификация объективов достаточно сложна и связана с тем, для изучения каких объектов предназначен микроскоп, зависит от требуемой точности воспроизведения объекта с учетом разрешающей способности и цветопередачи в центре и по полю видения.

Современные объективы имеют сложную конструкцию, количество линз в оптических системах доходит до 7—13. При этом расчеты базируются в основном на стеклах с особыми свойствами и кристалле флюорите или стеклах, аналогичных ему по основным физико-химическим свойствам.

По степени исправления аберраций выделяют несколько типов объективов:

Исправленные в спектральном диапазоне:

Монохроматические объективы (монохроматы) рассчитаны для применения в узком спектральном диапазоне, практически они хорошо работают в одной длине волны. Аберрации исправлены в узком спектральном диапазоне. Монохроматы были широко распространены в 60-х годах в период развития фотометрических методов исследования и создания аппаратуры для исследований в ультрафиолетовой (УФ) и инфракрасной (ИК)областях спектра.

Ахроматические объективы (ахроматы) рассчитаны для применения в спектральном диапазоне 486-656 нм. В этих объективах, устранены сферическая аберрация, хроматическая аберрация положения для двух длин волн (зеленого и желтого участков спектра), кома, астигматизм и частично сферохроматическая аберрация.

Изображение объекта имеет несколько синевато-красноватый оттенок. Технологически объективы достаточно просты – небольшое количество линз, технологичные для изготовления марки стекол, радиуса, диаметры и толщины линз. Относительно дешевые. Входят в комплект микроскопов, которые предназначены для рутинных работ и обучения.

В связи с простотой конструкции (всего 4 линзы) ахроматы имеют следующие достоинства:

- высокий коэффициент светопропускания, что необходимо при проведении фотометрических измерений и люминесцентных исследованиях;

- обеспечение трудно сочетаемых при расчете условий: большое рабочее расстояние при работе объектива с покровным стеклом, явно превышающим стандартнуютолщину и при этом - желание сохранения разрешающей способности, что необходимо при работе на инвертированных микроскопах.

К недостаткам можно отнеси то, что полевые аберрации в чистых ахроматах исправлены чаще всего на 1/2-2/3 поля, т.е. без перефокусировки возможно наблюдение в пределах 1/2-2/3 по центру видения. Это увеличивает время наблюдения, т.к. требует постоянной перефокусировки на край поля.

Апохроматические объективы. У апохроматов спектральная область расширена и ахроматизация выполняется для трех длин волн. Кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация.

Развитие этот тип объективов получил после того, как в оптическую схему объектива стали вводится линзы из кристаллов и специальных стекол. Количество линз в оптической схеме апохромата доходит до 6. По сравнению с ахроматами, апохроматы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

Полевые аберрации в чистых апохроматах исправлены даже меньше чем у ахроматов, чаще всего на 1/2 поля, т.е. без перефокусировки возможно наблюдение в пределах 1/2 по центру видения.

Апохроматы обычно применяются при особо тонких и важных исследованиях и особенно там, где требуется качественная микрофотография.


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.031 с.